DOI QR코드

DOI QR Code

Comparison of the photovoltaic efficiency on DSSC for nanometer sized $TiO_2$ using a conventional sol-gel and solvothermal methods

  • Lee, Ye-Ji (Department of Chemistry, College of Science, Yeungnam University) ;
  • Chae, Jin-Ho (Department of Chemistry, College of Science, Yeungnam University) ;
  • Kang, Mi-Sook (Department of Chemistry, College of Science, Yeungnam University)
  • Received : 2009.09.15
  • Accepted : 2010.01.19
  • Published : 2010.07.25

Abstract

When the two types of $TiO_2$ coatings prepared by sol-gel and solvothermal methods were applied to dye-sensitized solar cell (DSSC) in this study, the energy conversion efficiency of the solvothermalmodified $TiO_2$ was considerably higher than that on the sol-gel modified $TiO_2$; approximately 8.51 (solvothermal) and 5.93% (sol-gel) with the N719 dye under 100 mW/$cm^2$ of simulated sunlight, respectively. These results are in agreement with an electrostatic forcemicroscopy (EFM) study showing that the electrons were transferred rapidly to the surface of the solvothermal-modified $TiO_2$ film, compared with that on a sol-gel modified $TiO_2$ film. Furthermore, FT-IR analysis of the films after N719 dye adsorption showed that the solvothermal-modified $TiO_2$ had a strong band at 500 $cm^{-1}$, which was assigned to metal-O, due to a new Ti-O bond between the O of $COO^-$ and a Ti atom. This peak was considerably weaker in the sol-gel modified $TiO_2$.

Keywords

Acknowledgement

Supported by : NRF

References

  1. B. O'Regan, M. Gratzel, Nature 353 (1991) 737. https://doi.org/10.1038/353737a0
  2. M. Gratzel, Nature 414 (2001) 338. https://doi.org/10.1038/35104607
  3. M. Gratzel, Inorg. Chem. 44 (2005) 6841. https://doi.org/10.1021/ic0508371
  4. D. Chu, X. Yuan, G. Qin, M. Xu, P. Zheng, J. Lu, L. Zha, J. Nanopart. Res. 10 (2008) 357. https://doi.org/10.1007/s11051-007-9241-7
  5. T. Ohno, M. Akiyoshi, T. Umebayashi, T. Asai, T. Mitsui, M. Matsumura, Appl. Catal., A 265 (2004) 115. https://doi.org/10.1016/j.apcata.2004.01.007
  6. G.R. Torres, T. Lindgren, J. Lu, C.G. Granqvist, S.E. Lindquist, J. Phys. Chem. B 108 (2004) 5995. https://doi.org/10.1021/jp037477s
  7. M. Gaetzel, A.J. Mcevoy, Asian J. Energy Environ. 5 (2004) 197.
  8. D. Kuang, C. Klein, S. Ito, J.E. Moser, R. Humphry-Baker, N. Evans, F. Duriaux, C. Gratzel, S.M. Zakeeruddin, M. Gratzel, Adv. Mater. 19 (2007) 1133. https://doi.org/10.1002/adma.200602172
  9. J. Lee, B. Jeong, S. Jang, Y. Kim, Y. Jang, S. Lee, M. Kim, J. Ind. Eng. Chem. 15 (5) (2009) 724. https://doi.org/10.1016/j.jiec.2009.09.053
  10. Y. Li, T. Ishigaki, J. Cryst. Growth 242 (2002) 511. https://doi.org/10.1016/S0022-0248(02)01438-0
  11. H.P. Klug, L.F. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed., John Wiley & Sons, Inc., 1954,, p. 716.
  12. M. Gratzel, J. Photochem. Photobiol. 4 (2003) 145. https://doi.org/10.1016/S1389-5567(03)00026-1
  13. K. Kalyanasundaran, M. Gratzel, Coord. Chem. Rev. 77 (1999) 347.
  14. B.Y. Lee, S.H. Park, S.C. Lee, M. Kang, C.H. Park, S.J. Choung, J. Ind. Eng. Chem. 20 (2003) 812.
  15. F.M. Serry, K. Kjoller, J.T. Thornton, R.J. Tench, D. Cook, Electric Force Microscopy, Surface Potential Imaging, and Surface Electric Modification with the Atomic Force Microscope, Veeco Instruments, Inc., 2007.
  16. T.V. Vorburger, J.A. Dagata, G. Wilkening, K. Lizuka, in: Czanderna, et al. (Eds.), Beam Effects, Characterization of Surface Topography, and Beam Effects Depth Profiling in Surface Analysis, Plenum Press, New York, 1998.
  17. H.T. Sun, Z. Li, J. Zhou, Y.Y. Zhao, M. Lu, Appl. Surf. Sci. 253 (2007) 6109. https://doi.org/10.1016/j.apsusc.2007.01.012
  18. P.P. Girard, Inst. Phys. Pub. Nanotechnol. 12 (2001) 485. https://doi.org/10.1088/0957-4484/12/4/321

Cited by

  1. Synthesis, structural and spectral properties of an ionic polyacetylene: Poly[N‐(5‐nitro‐2‐furanmethylene)‐2‐ethynylpyridinium bromide] vol.122, pp.2, 2011, https://doi.org/10.1002/app.33643
  2. The Effect of Calcinations Temperature on the Performance of TiO2 Aggregates-Based Dye Solar Cells (DSCs) vol.364, pp.None, 2010, https://doi.org/10.4028/www.scientific.net/amr.364.248
  3. Zinc stannate nanostructures: hydrothermal synthesis vol.12, pp.1, 2010, https://doi.org/10.1088/1468-6996/12/1/013004
  4. Synthesis and properties of an ionic polyacetylene by the activated polymerization of 2-ethynylpyridine with the ring-opening of propiolactone vol.161, pp.5, 2010, https://doi.org/10.1016/j.synthmet.2010.12.026
  5. 혼성반도체로 제조된 염료감응형 태양전지의 전기화학적 특성 vol.49, pp.2, 2010, https://doi.org/10.9713/kcer.2011.49.2.175
  6. Synthesis of Zr-incorporated TiO2 Using a Solvothermal Method and its Photovoltaic Efficiency on Dye-sensitized Solar Cells vol.32, pp.9, 2010, https://doi.org/10.5012/bkcs.2011.32.9.3317
  7. The biological toxicities of two crystalline phases and differential sizes of $TiO_2$ nanoparticles during zebrafish embryogenesis development vol.8, pp.4, 2012, https://doi.org/10.1007/s13273-012-0039-z
  8. Fe and Ni co-doped TiO2 nanoparticles prepared by alcohol-thermal method: Application in hydrogen evolution by water splitting under visible light irradiation vol.228, pp.None, 2010, https://doi.org/10.1016/j.powtec.2012.05.018
  9. A novel photoanode architecture of dye-sensitized solar cells based on TiO2 hollow sphere/nanorod array double-layer film vol.365, pp.1, 2010, https://doi.org/10.1016/j.jcis.2011.08.073
  10. Enhancement of Photocurrent Efficiency in Dye-sensitized Solar Cells Using Nanometer-sized Y-incorporated TiO2 Materials vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1220
  11. Synthesis and Characterization of Spinel-Type NiCr2O4 Nanocrystalline vol.512, pp.None, 2010, https://doi.org/10.4028/www.scientific.net/kem.512-515.86
  12. Photovoltaic Efficiencies on Dye-Sensitized Solar Cells Assembled with Graphene-Linked TiO2 Anode Films vol.33, pp.10, 2010, https://doi.org/10.5012/bkcs.2012.33.10.3355
  13. Highly efficient nanocrystalline ZnO thin films prepared by a novel method and their application in dye-sensitized solar cells vol.109, pp.3, 2010, https://doi.org/10.1007/s00339-012-7089-x
  14. 티타늄 함유 텅스텐 산화물 광촉매를 이용한 메탄올/물 분해로부터 수소제조 vol.18, pp.4, 2010, https://doi.org/10.7464/ksct.2012.18.4.355
  15. Nanostructured TiO2 for energy conversion and storage vol.3, pp.47, 2013, https://doi.org/10.1039/c3ra44031a
  16. Performance of TiO2 Aggregates-Based Dye Solar Cells vol.737, pp.None, 2010, https://doi.org/10.4028/www.scientific.net/msf.737.137
  17. Performance of TiO2 Aggregates-Based Dye Solar Cells vol.737, pp.None, 2010, https://doi.org/10.4028/www.scientific.net/msf.737.137
  18. Effect of Photoelectrode with Phosphor-Containing TiO2Layer for Dye-Sensitized Solar Cells vol.52, pp.11, 2010, https://doi.org/10.7567/jjap.52.11nm03
  19. High photocatalytic activity of hydrogen production from water over Fe doped and Ag deposited anatase TiO2 catalyst synthesized by solvothermal method vol.228, pp.None, 2010, https://doi.org/10.1016/j.cej.2013.04.065
  20. Au-Loaded Titanium Dioxide Nanoparticles Synthesized by Modified Sol-Gel/Impregnation Methods and Their Application to Dye-Sensitized Solar Cells vol.2014, pp.None, 2010, https://doi.org/10.1155/2014/865423
  21. Improving the performance of dye-sensitized solar cells by using the conversion luminescence of a phosphor vol.65, pp.10, 2010, https://doi.org/10.3938/jkps.65.1682
  22. Optimized TiO2 Nanocrystallites Aggregates for Enhanced Efficiency in Dye Solar Cells vol.917, pp.None, 2010, https://doi.org/10.4028/www.scientific.net/amr.917.35
  23. Synthesis of Core@shell Structured CuFeS2@TiO2 Magnetic Nanomaterial and Its Application for Hydrogen Production by Methanol Aqueous Solution Photosplitting vol.35, pp.9, 2010, https://doi.org/10.5012/bkcs.2014.35.9.2813
  24. Effect of Morphology on SnO2/MWCNT-Based DSSC Performance with Various Annealing Temperatures vol.1107, pp.None, 2010, https://doi.org/10.4028/www.scientific.net/amr.1107.649
  25. Synthesis and characterization of TiO2 thin films for DSSC prototype vol.3, pp.6, 2010, https://doi.org/10.1016/j.matpr.2016.04.108
  26. Influence of Anodization Time on Photovoltaic Performance of DSSCs Based on TiO2 Nanotube Array vol.2016, pp.None, 2010, https://doi.org/10.1155/2016/4651654
  27. N/Al‐Incorporated TiO 2 Nanocompositesfor Improved Device Performance of aDye‐Sensitized Solar Cell vol.2, pp.15, 2010, https://doi.org/10.1002/slct.201700550
  28. Effect of Titanium Dioxide (TiO2) Light Scattering Layer deposited by Spray Deposition Method at Room Temperature for Dye-sensitized Solar Cell (DSSC) vol.17, pp.4, 2010, https://doi.org/10.1016/j.matpr.2019.06.013
  29. 코어/쉘 구조의 나노입자 제조 및 증착 공정을 활용한 염료감응 태양전지 vol.57, pp.1, 2019, https://doi.org/10.9713/kcer.2019.57.1.111
  30. Enhancing the Efficiency of PMMA-Based Quasi-Solid Electrolyte Dye-Sensitized Solar Cells by Ozone Treatment of TiO2 Thin Films vol.27, pp.1, 2010, https://doi.org/10.14243/jsaem.27.97
  31. Photovoltaic Characteristics of Multiwalled Carbon Nanotube Counter-Electrode Materials for Dye-Sensitized Solar Cells Produced by Chemical Treatment and Addition of Dispersant vol.9, pp.4, 2019, https://doi.org/10.3390/coatings9040250
  32. Improved DSSC photovoltaic performance using reduced graphene oxide-carbon nanotube/platinum assisted with customised triple-tail surfactant as counter electrode and zinc oxide nanowire/titanium dioxi vol.4, pp.1, 2010, https://doi.org/10.1007/s41127-019-00024-x
  33. Functionalization of aligned carbon nanotubes used as counter electrode for dye-sensitized solar cells vol.6, pp.7, 2010, https://doi.org/10.1088/2053-1591/aaf152
  34. Reduced Graphene Oxide Decorated Tio2 for Improving Dye-Sensitized Solar Cells (DSSCs) vol.15, pp.6, 2010, https://doi.org/10.2174/1573413714666180724113106
  35. Hydrothermal processed heterogeneous MoS2 assisted charge transport in dye sensitized solar cells vol.125, pp.12, 2010, https://doi.org/10.1007/s00339-019-3126-3
  36. Stabilization of Mercuric Iodide Using Titanium and Silicon Oxides vol.76, pp.6, 2010, https://doi.org/10.3938/jkps.76.484
  37. Effect of Cr and Zr doping of TiO2 on the opto-electrical properties of dye sensitized solar cells vol.207, pp.None, 2020, https://doi.org/10.1016/j.ijleo.2019.163888