DOI QR코드

DOI QR Code

Flame retardant epoxy complex produced by addition of montmorillonite and carbon nanotube

  • Lee, Sung-Kyu (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Bai, Byong-Chol (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Im, Ji-Sun (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • In, Se-Jin (Department of Fire and Disaster Protection Engineering, Woosong University) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
  • Received : 2010.04.27
  • Accepted : 2010.06.15
  • Published : 2010.11.25

Abstract

Flame retardant additives of montmorillonite (MMT) and multi-walled carbon nanotube (MWCNT) were embedded in epoxy resin to improve the resin's resistance to oxidation. The MWCNTs reduced the degradation rate of the epoxy complex and increased the char yield, and also increased the limiting oxygen index in a first order relationship with char yield. MMT acted as an energy storage medium to hinder thermal transfer within the epoxy complex. The thermal activation energy increased upon addition of MMT/MWCNT. Addition of MMT and MWCNT significantly improved the flame retardant and anti-oxidation properties of the epoxy complex.

Keywords

References

  1. S.J. Park, K.M. Bae, M.K. Seo, J. Ind. Eng. Chem. 16 (2010) 337. https://doi.org/10.1016/j.jiec.2010.01.051
  2. J.W. Shin, J.P. Jeun, P.H. Kang, J. Ind. Eng. Chem. 15 (2009) 555. https://doi.org/10.1016/j.jiec.2009.01.012
  3. J.S. Im, I.J. Park, S.J. In, T. Kim, Y.S. Lee, J. Fluorine Chem. 130 (2009) 1111. https://doi.org/10.1016/j.jfluchem.2009.06.022
  4. B.K. Kandola, B. Biswas, D. Price, A.R. Horrocks, Polym. Degrad. Stabil. 95 (2010) 144. https://doi.org/10.1016/j.polymdegradstab.2009.11.040
  5. G. Das, N. Karak, Polym. Degrad. Stabil. 94 (2009) 1948. https://doi.org/10.1016/j.polymdegradstab.2009.07.028
  6. E. Franchini, J. Galy, J.F. Ge'rard, D. Tabuani, A. Medici, Polym. Degrad. Stabil. 94 (2009) 1728. https://doi.org/10.1016/j.polymdegradstab.2009.06.025
  7. J.S. Im, S.J. Kim, P.H. Kang, Y.S. Lee, J. Ind. Eng. Chem. 15 (2009) 699. https://doi.org/10.1016/j.jiec.2009.09.048
  8. L. Ye, Q. Wu, B. Qu, Polym. Degrad. Stabil. 94 (2009) 751. https://doi.org/10.1016/j.polymdegradstab.2009.02.010
  9. Q. Wu, W. Zhu, C. Zhang, Z. Liang, B. Wang, Carbon 48 (2010) 1799. https://doi.org/10.1016/j.carbon.2010.01.023
  10. M. Zanetti, L. Costa, Polymer 45 (2004) 4367. https://doi.org/10.1016/j.polymer.2004.04.043
  11. K.W. Park, O.Y. Kwon, J. Ind. Eng. Chem. 10 (2004) 252.
  12. C.F. Dai, P.R. Li, J.M. Yeh, Eur. Polym. J. 44 (2008) 2439. https://doi.org/10.1016/j.eurpolymj.2008.06.015
  13. H. Ma, L. Tong, Z. Xu, Z. Fang, Appl. Clay Sci. 42 (2008) 238. https://doi.org/10.1016/j.clay.2007.12.009
  14. T. Kashiwagi, E. Grulke, J. Hilding, K. Groth, R. Harris, K. Butler, J. Shields, S. Kharchenko, J. Douglas, Polymer 45 (2004) 4227. https://doi.org/10.1016/j.polymer.2004.03.088
  15. F. Laoutid, L. Bonnaud, M. Alexandre, J.M. Lopez-Cuesta, P.H. Dubois, Mater. Sci.Eng. R - Rep. 63 (2009) 100. https://doi.org/10.1016/j.mser.2008.09.002
  16. Y.S. Choi, S.K. Choi, S.C. Moon, B.W. Jo, J. Ind. Eng. Chem. 14 (2008) 387. https://doi.org/10.1016/j.jiec.2007.12.006
  17. J.S. Im, E. Jeong, S.J. In, Y.S. Lee, Compos. Sci. Technol. 70 (2010) 763. https://doi.org/10.1016/j.compscitech.2010.01.007
  18. D. Burgentzle , J. Duchet, J.F. Gerard, A. Jupin, B. Fillon, J. Colloid Interface Sci. 278 (2004) 26. https://doi.org/10.1016/j.jcis.2004.05.015
  19. F. Zhao, C. Wan, X. Bao, B. Kandasubramanian, J. Colloid Interface Sci. 333 (2009) 164. https://doi.org/10.1016/j.jcis.2009.02.014
  20. J. Wang, H. Xie, Z. Xin, Y. Li, L. Chen, Sol. Energy 84 (2010) 339. https://doi.org/10.1016/j.solener.2009.12.004
  21. S.R. Hostler, A.R. Abramson, M.D. Gawryla, S.A. Bandi, D.A. Schiraldi, Int. J. Heat Mass Transfer 52 (2009) 665. https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.002
  22. B. Guo, D. Jia, C. Cai, Eur. Polym. J. 40 (2004) 1743. https://doi.org/10.1016/j.eurpolymj.2004.03.027
  23. C.D. Doyle, Anal. Chem. 33 (1961) 77. https://doi.org/10.1021/ac60169a022
  24. C.F. Kuan, W.J. Chen, Y.L. Li, C.H. Chen, H.C. Kuan, C.L. Chiang, J. Phys. Chem. Solids 71 (2010) 539. https://doi.org/10.1016/j.jpcs.2009.12.031
  25. S.L. Kodjie, L. Li, B. Li, W. Cai, C.Y. Li, M. Keating, J. Macromol. Sci. Part B - Phys. 45 (2006) 231. https://doi.org/10.1080/00222340500522299
  26. R.J. Jeng, S.M. Shau, J.J. Lin, W.C. Su, Y.S. Chiu, Eur. Polym. J. 38 (2002) 683. https://doi.org/10.1016/S0014-3057(01)00246-4
  27. D.W. Krevelen, Polymer 16 (1975) 615. https://doi.org/10.1016/0032-3861(75)90157-3

Cited by

  1. 알킬화가 다중벽탄소나노튜브로 강인화된 에폭시수지의 계면 및 열전도도에 미치는 영향 vol.35, pp.6, 2010, https://doi.org/10.7317/pk.2011.35.6.548
  2. Preparation and characteristics of conducting polymer-coated multiwalled carbon nanotubes for a gas sensor vol.12, pp.3, 2010, https://doi.org/10.5714/cl.2011.12.3.162
  3. Direct fluorination as a novel organophilic modification method for the preparation of Illite/polypropylene nanocomposites vol.47, pp.2, 2012, https://doi.org/10.1007/s10853-011-5893-x
  4. Flammability and thermal properties of epoxy/glass/MWNT Composites vol.131, pp.4, 2010, https://doi.org/10.1002/app.39849
  5. Facile preparation of clay reinforced konjac glucomannan aerogels vol.4, pp.42, 2010, https://doi.org/10.1039/c4ra03165b
  6. Combination effects of carbon nanotubes, MMT and phosphorus flame retardant on fire and thermal resistance of fiber-reinforced epoxy composites vol.23, pp.6, 2010, https://doi.org/10.1007/s13726-014-0241-z
  7. Effect of incorporation of POSS compounds and phosphorous hardeners on thermal and fire resistance of nanofilled aeronautic resins vol.5, pp.15, 2010, https://doi.org/10.1039/c4ra11537f
  8. Flame-Retardant Polymer Nanocomposites and Their Heat-Release Rates vol.19, pp.4, 2010, https://doi.org/10.1061/(asce)hz.2153-5515.0000269
  9. Synthesis of a novel flame retardant phosphorus/nitrogen/siloxane and its application on cotton fabrics vol.85, pp.7, 2015, https://doi.org/10.1177/0040517514555801
  10. Thermal and ablative properties of binary carbon nanotube and nanodiamond reinforced carbon fibre epoxy matrix composites vol.44, pp.10, 2010, https://doi.org/10.1179/1743289815y.0000000036
  11. Poly(vinyl alcohol) modified by KE reactive dyes as a novel proton‐exchange membrane for potential fuel‐cell applications vol.133, pp.10, 2010, https://doi.org/10.1002/app.43019
  12. A review on flammability of epoxy polymer, cellulosic and non‐cellulosic fiber reinforced epoxy composites vol.27, pp.5, 2010, https://doi.org/10.1002/pat.3739
  13. Synergistic effect of amino silane functional montmorillonite on intumescent flame‐retarded SEBS and its mechanism vol.134, pp.24, 2010, https://doi.org/10.1002/app.44953
  14. Effect of Fe3O4‐doped sepiolite on the flammability and thermal degradation properties of epoxy composites vol.28, pp.8, 2010, https://doi.org/10.1002/pat.3715
  15. Preparation of carbon nanotube-containing hybrid composites from epoxy, novolac, and epoxidized novolac resins using sol-gel method vol.132, pp.1, 2018, https://doi.org/10.1007/s10973-018-6992-6
  16. Simultaneously improving the fire safety and mechanical properties of epoxy resin with Fe-CNTs via large-scale preparation vol.6, pp.15, 2010, https://doi.org/10.1039/c7ta10961j
  17. A combination of POSS and polyphosphazene for reducing fire hazards of epoxy resin vol.29, pp.4, 2018, https://doi.org/10.1002/pat.4235
  18. Hydrogen‐Bonded Polymer–Small Molecule Complexes with Tunable Mechanical Properties vol.39, pp.9, 2010, https://doi.org/10.1002/marc.201800050
  19. Studies on the performance of multi-phased carbon/epoxy composites with nanoclay and multi-walled carbon nanotubes vol.1, pp.4, 2010, https://doi.org/10.1007/s41939-018-0017-9
  20. Mechanical Properties and Flame Retardancy of Epoxy Resin/Nanoclay/Multiwalled Carbon Nanotube Nanocomposites vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/3105205
  21. Flame Retardant Epoxy Derived from Tannic Acid as Biobased Hardener vol.7, pp.4, 2010, https://doi.org/10.1021/acssuschemeng.8b04851
  22. A novel strategy for enhancing the flame resistance, dynamic mechanical and the thermal degradation properties of epoxy nanocomposites vol.6, pp.12, 2010, https://doi.org/10.1088/2053-1591/ab537f
  23. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview vol.13, pp.7, 2010, https://doi.org/10.3390/polym13071047