DOI QR코드

DOI QR Code

Kinetic study of Fischer-Tropsch process on titania-supported cobalt-manganese catalyst

  • Atashi, H. (Department of Chemical Engineering, Faculty of Engineering, University of Sistan & Baluchestan) ;
  • Siami, F. (Department of Chemical Engineering, Faculty of Engineering, University of Sistan & Baluchestan) ;
  • Mirzaei, A.A. (Department of Chemistry, Faculty of Science, University of Sistan & Baluchestan) ;
  • Sarkari, M. (Department of Chemical Engineering, Faculty of Engineering, University of Sistan & Baluchestan)
  • Received : 2010.01.27
  • Accepted : 2010.04.28
  • Published : 2010.11.25

Abstract

An active cobalt-manganese catalyst was prepared by co-precipitation method, and was also tested for hydrogenation of carbon monoxide to light olefins. The catalyst was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area techniques. The kinetic experiments on a well-characterized Co-Mn/$TiO_2$ catalyst were performed in a fixed-bed micro-reactor, and were also conducted in a temperature range of 190-$280^{\circ}C$, pressure range of 1-10 bar, $H_2$/CO feed ratio (mol/mol) range of 1-3 and a space velocity range of 2700-5200 $h^{-1}$. Two kinetic expressions based on Langmuir-Hinshelwood-Houngen-Watson (LHHW) mechanism were observed to fit the experimental data accurately for Fischer-Tropsch synthesis reaction. The kinetic parameters were estimated with non-linear regression method. Activation energies obtained were 35.131 and 44.613 kJ/mol for optimal kinetics models.

Keywords

References

  1. B. Jager, Stud. Surf. Sci. Catal. 119 (1998) 25. https://doi.org/10.1016/S0167-2991(98)80404-7
  2. F. Tihay, A.C. Roger, G. Pourroy, A. Kienneman, Energy Fuels 16 (2002) 1271. https://doi.org/10.1021/ef020059m
  3. N.J. Coville, D.J. Duvenhang, Appl. Catal. A 153 (1997) 43. https://doi.org/10.1016/S0926-860X(96)00326-2
  4. S. Hinchiranan, Y. Zhang, S. Nagamori, T. Vitidsant, N. Tsubaki, Fuel Process. Technol. 89 (2008) 455. https://doi.org/10.1016/j.fuproc.2007.11.007
  5. M. Vob, D. Borgmann, G. Wedler, J. Catal. 212 (2002) 10 https://doi.org/10.1006/jcat.2002.3739
  6. G. Fan, B. Zou, S. Cheng, L. Zheng, J. Ind. Eng. Chem. 16 (2010) 220. https://doi.org/10.1016/j.jiec.2009.08.009
  7. Y. Brik, M. Kacimi, M. Ziyad, F. Bonzon-Verduraz, J. Catal. 202 (2001) 118. https://doi.org/10.1006/jcat.2001.3262
  8. F. Morales, F.M.F. Groot, P. Glatzel, E. Kleimenow, H. Bluhm, M. Havecker, A. Knop- Gericke, B.M.J. Weckhuysen, Phys. Chem. B 108 (2004) 16201. https://doi.org/10.1021/jp0403846
  9. J. Barrault, C. Forguy, J. Menezo, R. Maurel, React. Kinet. Catal. Lett. 17 (1981) 373. https://doi.org/10.1007/BF02065849
  10. J. Barrault, C. Forguy, V. Perrichon, Appl. Catal. 5 (1983) 119. https://doi.org/10.1016/0166-9834(83)80300-5
  11. B. Bussemeier, C.D. Frohning, B. Cornils, Hydrocarb. Process. 11 (1976) 55.
  12. J.L. Zhou, S.R. Yan, Y.D. Guan, X.Y. Huang, Q.J. Zeng, Proc. 4rd. Symp. Coal C1 Chemistry, China, (1993), p. 473.
  13. A. Irankhah, A. Haghtalab, E.V. Farahani, K. Sadaghianizadeh, J. Nat. Gas Chem. 16 (2007) 115. https://doi.org/10.1016/S1003-9953(07)60036-X
  14. R.B. Anderson, Reinhold New York 4 (1956) 247.
  15. F. Gideon Botes, B. van Dyk, C. McGregor, Ind. Eng. Chem. Res. 48 (2009) 10439. https://doi.org/10.1021/ie900119z
  16. B. Sarup, B.W. Wojciechowski, Can. J. Chem. Eng. 67 (1989) 620. https://doi.org/10.1002/cjce.5450670415
  17. B.W. Wojciechowski, Catal. Rev. Sci. Eng. 30 (1988) 629. https://doi.org/10.1080/01614948808071755
  18. R.B. Pannell, C.L. Kibby, T.P. Kobylinski, Proc. 7rd Intern. Cong. Catalysts, Tokyo, (1980), p. 447.
  19. A.O.I. Rautavuoma, H.S. van der Baan, Appl. Catal. 1 (1981) 247. https://doi.org/10.1016/0166-9834(81)80031-0
  20. J. Wang, Ph.D. Thesis, Brigham Young University, Provo, UT (1987).
  21. H.A.J. Van Dijk, Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands (2001).
  22. E. van Steen, H. Schulz, Appl. Catal. A: Gen. 186 (1999) 309. https://doi.org/10.1016/S0926-860X(99)00151-9
  23. R. Zennaro, M. Tagliabue, C.H. Bartholomew, Catal. Today 58 (2000) 300.
  24. M.E. Dry, J. Chem. Technol. Biotechnol. 77 (2001) 43
  25. S. Authayanun, W. Pothong, D. Saebea, Y. Patcharavorachot, A. Arpornwichanop, J. Ind. Eng. Chem. 14 (2008) 771. https://doi.org/10.1016/j.jiec.2008.05.007
  26. E.F.G. Herington, Chem. Ind. 65 (1946) 346.
  27. E.S. Lox, G.B. Marin, E. de Graeve, P. Bussier, Appl. Catal. A 40 (1988) 197. https://doi.org/10.1016/S0166-9834(00)80438-8
  28. G.P. Vander Laan, A.A.C.M. Beenackers, Catal. Rev. Sci. Eng. 41 (1999) 255. https://doi.org/10.1081/CR-100101170
  29. J. Yang, Y. Liu, J. Chang, Y.N. Wang, L. Bai, Y.Y. Xu, H.W. Xiang, Y.W. Li, B. Zhang, Ind. Eng. Chem. Res. 42 (2003) 5066 https://doi.org/10.1021/ie030135o
  30. G. Talebi, M. Sohrabi, S.J. Royaee, R.L. Keiski, M. Huuhtanen, H. Imamverdizadeh, J. Ind. Eng. Chem. 14 (2008) 614. https://doi.org/10.1016/j.jiec.2008.04.001
  31. Y.N. Wang, W.P. Ma, Y.J. Lu, J. Yang, Y.Y. Xu, H.W. Xiang, Y.L. Zha, B.J. Zhang, Fuel 82 (2003) 195. https://doi.org/10.1016/S0016-2361(02)00154-0
  32. D.E. Mears, ACS Monogr. 133 (1974) 218.
  33. M. Mollavali, F. Yaripour, H. Atashi, S. Sahebdelfar, Ind. Eng. Chem. Res. 47 (2008) 3265. https://doi.org/10.1021/ie800051h
  34. R. Montarnal, J.F.L.P. Masson, Paris 231 (1967).
  35. H.B. Zhang, G.L. Schrader, J. Catal. 95 (1985) 325. https://doi.org/10.1016/0021-9517(85)90038-7
  36. C.G. Visconti, L. Lietti, E. Tronconi, P. Forzatti, R. Zennaro, E. Finocchio, Chem. Eng. Sci. 62 (2007) 5338. https://doi.org/10.1016/j.ces.2006.12.064
  37. H.J. Seo, E.Y. Yu, J. Ind. Eng. Chem. 11 (5) (2005) 681.
  38. J.W. Bae, S.J. Park, S.H. Kang, Y.J. Lee, K.W. Jun, Y.W. Rhee, J. Ind. Eng. Chem. 15 (2009) 798. https://doi.org/10.1016/j.jiec.2009.09.002
  39. J.C. Ryu, D.H. Lee, K.S. Kang, C.S. Park, J.W. Kim, Y.H. Kim, J. Ind. Eng. Chem. 14 (2008) 252 https://doi.org/10.1016/j.jiec.2007.10.003
  40. J.Y. Lee, K.W. Jun, J.Y. Park, H.S. Potdar, R.C. Chikate, J. Ind. Eng. Chem. 14 (38) (2008). https://doi.org/10.1016/j.jiec.2007.08.009
  41. J.Y. Park, Y.J. Lee, K.W. Jun, J.W. Bae, N. Viswanadham, Y.H. Kim, J. Ind. Eng. Chem. 15 (2009) 847. https://doi.org/10.1016/j.jiec.2009.09.011
  42. V. Ponec, W.A. Van Barnevald, Ind. Eng. Chem. Prod. Res. Dev. 18 (1979) 268. https://doi.org/10.1021/i360072a009
  43. K. Christman, O. Scober, G. Ertl, M. Neumann, J. Chem. Phys. 60 (1974) 4719. https://doi.org/10.1063/1.1680972

Cited by

  1. Effects of Reaction Conditions on Cobalt-Catalyzed Fischer-Tropsch Synthesis: Interactions between Operating Factors vol.55, pp.5, 2011, https://doi.org/10.5012/jkcs.2011.55.5.824
  2. Fischer-Tropsch Synthesis over Cobalt-loaded Oxidized Diamond Catalyst-Effect of Addition of Mn on Catalyst Performance- vol.55, pp.3, 2010, https://doi.org/10.1627/jpi.55.197
  3. Effect of Calcium Promoter on Ni-Based Catalysts Supported on α-Al2O3 and TiO2-P25 vol.204, pp.None, 2012, https://doi.org/10.4028/www.scientific.net/amm.204-208.3909
  4. Efficiency of Renewable Organic Raw Materials Conversion Using Plasma Technology vol.41, pp.12, 2010, https://doi.org/10.1109/tps.2013.2275936
  5. Rate Expression of Fischer-Tropsch Synthesis Over Co-Mn Nanocatalyst by Response Surface Methodology (RSM) vol.57, pp.6, 2013, https://doi.org/10.5012/jkcs.2013.57.6.769
  6. Fischer-Tropsch synthesis on cobalt-manganese nanocatalyst: studies on rate equations and operation conditions vol.5, pp.2, 2010, https://doi.org/10.1007/s40090-014-0014-8
  7. 전산유체역학을 이용한 Fischer-Tropsch 마이크로채널 반응기의 채널 구조 영향 분석 vol.52, pp.6, 2010, https://doi.org/10.9713/kcer.2014.52.6.826
  8. Thermodynamic analysis of steam reforming of methane with statistical approaches vol.103, pp.None, 2010, https://doi.org/10.1016/j.enconman.2015.07.005
  9. An Investigation into the Effects of Mn Promotion on the Activity and Selectivity of Co/SiO2 for Fischer–Tropsch Synthesis: Evidence for Enhanced CO Adsorption and Dissociation vol.5, pp.10, 2015, https://doi.org/10.1021/acscatal.5b01578
  10. Modeling Selectivity of Ethylene and Propylene in the Fischer‐Tropsch Synthesis with Artificial Neural Network and Response Surface Methodology vol.1, pp.12, 2016, https://doi.org/10.1002/slct.201600310
  11. Synergistic Effect of Fe–Co Bimetallic Catalyst on FTS and WGS Activity in the Fischer–Tropsch Process: A Kinetic Study vol.56, pp.16, 2010, https://doi.org/10.1021/acs.iecr.6b04517
  12. The influence of catalyst factors for sustainable production of hydrocarbons via Fischer-Tropsch synthesis vol.33, pp.4, 2010, https://doi.org/10.1515/revce-2016-0009
  13. Sintering and Coking: Effect of Preparation Methods on the Deactivation of $$\hbox {Co}$$ Co - $$\hbox {Ni/TiO}_{2}$$ Ni/TiO 2 in Fischer-Tropsch Synthesis vol.43, pp.5, 2010, https://doi.org/10.1007/s13369-017-2845-z
  14. Synthesis of Fe-Co-Ce/Zeolite A-3 Catalysts and their Selectivity to Light Olefins for Fischer-Tropsch Synthesis in Fixed-Bed Reactor vol.149, pp.2, 2010, https://doi.org/10.1007/s10562-018-2647-2
  15. A simple coupled ANNs‐RSM approach in modeling product distribution of Fischer‐Tropsch synthesis using a microchannel reactor with Ru‐promoted Co/Al2O3 catalyst vol.44, pp.2, 2010, https://doi.org/10.1002/er.4990
  16. Effect of Pressure, H2/CO Ratio and Reduction Conditions on Co-Mn/CNT Bimetallic Catalyst Performance in Fischer-Tropsch Reaction vol.12, pp.5, 2010, https://doi.org/10.3390/sym12050698
  17. Kinetics and Selectivity Study of Fischer-Tropsch Synthesis to C5+ Hydrocarbons: A Review vol.11, pp.3, 2021, https://doi.org/10.3390/catal11030330
  18. Modeling Fischer–Tropsch kinetics and product distribution over a cobalt catalyst vol.67, pp.7, 2010, https://doi.org/10.1002/aic.17234
  19. Effect of Temperature, Syngas Space Velocity and Catalyst Stability of Co-Mn/CNT Bimetallic Catalyst on Fischer Tropsch Synthesis Performance vol.11, pp.7, 2021, https://doi.org/10.3390/catal11070846
  20. Fischer-Tropsch Synthesis for Light Olefins from Syngas: A Review of Catalyst Development vol.2, pp.3, 2021, https://doi.org/10.3390/reactions2030015