DOI QR코드

DOI QR Code

Preparation of $TiO_2$ thin films on glass beads by a rotating plasma reactor

  • Kim, Dong-Joo (Department of Chemical Engineering, Kangwon National University) ;
  • Kang, Jin-Yi (Department of Chemical Engineering, Kangwon National University) ;
  • Kim, Kyo-Seon (Department of Chemical Engineering, Kangwon National University)
  • Received : 2009.12.01
  • Accepted : 2010.04.26
  • Published : 2010.11.25

Abstract

We experimentally coated the $TiO_2$ thin films on the glass beads by a rotating cylindrical plasma chemical vapor deposition (PCVD) process. The precursors for the thin films were generated by the plasma reactions, and they deposited on the glass beads to become the grains on the films. The $TiO_2$ thin films grow more quickly on the glass beads by increasing the reactor pressure, or the rotation speed of the reactor. As the applied power increases, the thickness of the thin films on the glass beads decreases. As the thickness of the $TiO_2$ thin films increases, the uniformity of the $TiO_2$ thin films decreases due to the deposition of larger grains or due to the increase of crack size. The rotating cylindrical PCVD process can be a good method to prepare the particles coated with metal or organic-doped thin films for highly functionalized materials.

Keywords

References

  1. A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C 1 (2000) 1. https://doi.org/10.1016/S1389-5567(00)00002-2
  2. J.W. Ha, Y.W. Do, J.H. Park, C.H. Han, J. Ind. Eng. Chem. 15 (2009) 670. https://doi.org/10.1016/j.jiec.2009.09.042
  3. J.K. Lee, B.H. Jeong, S.I. Jang, Y.G. Kim, Y.W. Jang, S.B. Lee, M.R. Kim, J. Ind. Eng. Chem. 15 (2009) 724. https://doi.org/10.1016/j.jiec.2009.09.053
  4. D.-J. Kim, A. Nasonova, J.H. Park, J.Y. Kang, K.-S. Kim, Mater. Sci. Forum 544-545 (2007) 91.
  5. A. Nasonova, D.-J. Kim, W.-S. Kim, K.S. Kim, Res. Chem. Intermed. 34 (2008) 309. https://doi.org/10.1163/156856708784040597
  6. G.P. Fotou, T.T. Kodas, B. Anderson, Aerosol Sci. Technol. 33 (2000) 557. https://doi.org/10.1080/02786820050195395
  7. L. Zhang, M.B. Ranade, J.W. Gentry, J. Aerosol Sci. 35 (2004) 457. https://doi.org/10.1016/j.jaerosci.2003.10.009
  8. B. Zhang, Y.-C. Liao, S.L. Girshick, J.T. Roberts, J. Nanoparticle Res. 10 (2008) 173. https://doi.org/10.1007/s11051-007-9238-2
  9. M. Karches, M. Morstein, von Rohr Ph Rudolf, Surf. Coat. Technol. 169-170 (2003) 544. https://doi.org/10.1016/S0257-8972(03)00200-7
  10. T. Nakagawa, M. Hieda, D. Shindo, F. Saito, K. Yubuta, K. Nishimura, T. Fujii, Powder Technol. 130 (2003) 456. https://doi.org/10.1016/S0032-5910(02)00250-4
  11. K.-S. Kim, D.-J. Kim, J. Aerosol Sci. 37 (2006) 1532. https://doi.org/10.1016/j.jaerosci.2006.02.002
  12. D.-J. Kim, J.-O. Baeg, S.-J. Moon, K.-S. Kim, J. Nanosci. Nanotechnol. 9 (7) (2009) 4285. https://doi.org/10.1166/jnn.2009.M47
  13. M. Nakamura, D. Korzee, T. Aoki, J. Engemann, Y. Hatanaka, Appl. Surf. Sci. 175-6 (2001) 697. https://doi.org/10.1016/S0169-4332(01)00140-4
  14. G.A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, G.A. Rizzi, Thin Solid Films 371 (2006) 126.

Cited by

  1. Low temperature preparation and characterization of TiO2 nanoparticles coated glass beads by heterogeneous nucleation method vol.76, pp.None, 2013, https://doi.org/10.1016/j.matchar.2012.12.002
  2. Multifunctional particle coating by plasma process and its application to pollution control vol.4, pp.56, 2014, https://doi.org/10.1039/c4ra03896g
  3. Magnetic Core-shell ZnFe2O4@ZnO@SiO2 Nanoparticle의 합성과 성질에 관한 연구 vol.59, pp.5, 2010, https://doi.org/10.5012/jkcs.2015.59.5.397
  4. Role of photo-oxidation and adsorption at water back-flushing in hybrid water treatment of multi-channels alumina MF and PP beads coated with photocatalyst vol.54, pp.4, 2010, https://doi.org/10.1080/19443994.2014.909334
  5. Effect of water back-flushing and PP beads in hybrid water treatment of multi-channel alumina MF and photocatalyst-coated PP beads vol.54, pp.4, 2010, https://doi.org/10.1080/19443994.2014.922503
  6. Hybrid water treatment process of carbon fiber microfiltration and photocatalyst-coated polypropylene beads: roles of humic acid, photo-oxidation, and adsorption vol.57, pp.55, 2016, https://doi.org/10.1080/19443994.2016.1189696
  7. Effect of humic acid, photo-oxidation, and adsorption at air back-flushing in hybrid water treatment of multi-channel alumina MF and photocatalyst-coated PP beads vol.57, pp.16, 2010, https://doi.org/10.1080/19443994.2015.1025587
  8. Roles of ultrafiltration, photo-oxidation, and adsorption in hybrid water treatment process of tubular alumina UF and photocatalyst-coated PP beads with air backflushing vol.57, pp.17, 2010, https://doi.org/10.1080/19443994.2015.1027283
  9. Hybrid water treatment process of tubular carbon fiber ultrafiltration and photocatalyst-coated PP beads: treatment mechanisms and effects of water back-flushing time vol.57, pp.17, 2010, https://doi.org/10.1080/19443994.2015.1060168
  10. Influence of TiO2‐Layer Thickness of Spray‐Coated Glass Beads on Their Photocatalytic Performance vol.40, pp.6, 2010, https://doi.org/10.1002/ceat.201600432