DOI QR코드

DOI QR Code

Characterization of metal corrosion by aqueous amino acid salts for the capture of $CO_2$

  • Ahn, Seong-Yeon (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Song, Ho-Jun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Park, Jin-Won (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Ji-Hyun (Green Growth Laboratory, Korea Electric Power Research Institute) ;
  • Lee, In-Young (Green Growth Laboratory, Korea Electric Power Research Institute) ;
  • Jang, Kyung-Ryong (Green Growth Laboratory, Korea Electric Power Research Institute)
  • Received : 2009.11.16
  • Accepted : 2010.01.12
  • Published : 2010.09.01

Abstract

We investigated the absorption ability of potassium salts of amino acid solutions for carbon dioxide and compared the results with MEA. The corrosion and degradation behavior were investigated in a $CO_2$ absorption process using aqueous potassium salts of glycine and taurine. The experimental parameters varied were the concentration, amino acid type, temperature, $CO_2$ loading, piperazine, and the presence of corrosion inhibitors. The corrosion characteristics of carbon steel were measured with potassium glycinate and potassium taurate solutions over a wide range of concentrations (1.5 to 5.0M) and temperatures (313.15 to 353.15 K). The corrosion rate was calculated using a weight loss method averaging the results of four specimens. The experimental results indicate that increases in the concentration of the aqueous amino acid salts, solution temperature, $CO_2$ loading, and piperazine concentration accelerate the corrosion rate. In addition, corrosion inhibitors were proven to be effective in controlling corrosion.

Keywords

References

  1. A. F. Portugal, P.W. J. Derks, G. F. Versteeg, F.D. Magalhaes and A. Mendes, Chem. Eng. Sci., 62(23), 6534 (2007). https://doi.org/10.1016/j.ces.2007.07.068
  2. S. Lee, J.W. Park, H. J. Song, S. Maken and T. Filburn, Energy Policy, 36(1), 326 (2008). https://doi.org/10.1016/j.enpol.2007.09.018
  3. S. Lee, H. J. Song, S. Maken, H. C. Shin, H. C. Song and J.W. Park, J. Chem. Eng. Data, 51(2), 504 (2006). https://doi.org/10.1021/je0503913
  4. S. Lee, S. Choi, S. Maken, H. J. Song, H. C. Shin and J.W. Park, J. Chem. Eng. Data, 50(5), 1773 (2005). https://doi.org/10.1021/je050210x
  5. P. S. Kumar, J.A. Hogendoorn, G. F. Versteeg and P.H. M. Feron, AIChE J., 49(1), 203 (2003). https://doi.org/10.1002/aic.690490118
  6. H. J. Song, S. Lee, S. Maken, J. J. Park and J.W. Park, Fluid Phase Equilibria, 246(1-2), 1 (2006). https://doi.org/10.1016/j.fluid.2006.05.012
  7. S. Lee, H. J. Song, S. Maken, S.K. Yoo and J.W. Park, Korean J. Chem. Eng., 25(1), 1 (2008). https://doi.org/10.1007/s11814-008-0001-x
  8. J. Van Holst, S. R.A. Kersten and K. J.A. Hogendoorn, J. Chem. Eng. Data, 53(6), 1286 (2008). https://doi.org/10.1021/je700699u
  9. J. Zhang, S. Zhang, K. Dong, Y. Zhang, Y. Shen and X. Lv, Chemistry- A European Journal, 12(15), 4021 (2006). https://doi.org/10.1002/chem.200501015
  10. P. S. Kumar, J.A. Hogendoorn, P.H. M. Feron and G. F. Versteeg, Ind. Eng. Chem. Res., 42(12), 2832 (2003). https://doi.org/10.1021/ie0206002
  11. P. S. Kumar, J.A. Hogendeeorn, S. J. Timmer, P.H. M. Feron and G. F. Versteeg, Ind. Eng. Chem. Res., 42(12), 2841 (2003). https://doi.org/10.1021/ie020601u
  12. M. S. DuPart, T. R. Bacon and D. J. Edwards, Hydrocarbon Processing, 72(5), 89 (1993).
  13. E.N. Hawkes and B. F. Mago, Hydrocarbon Processing, 50(8), 109 (1971).
  14. S. Lee, S. Maken, J.W. Park, H. J. Song, J. J. Park, J.G. Shim, J. H. Kim and H. M. Eum, Fuel, 87(8-9), 1734 (2008). https://doi.org/10.1016/j.fuel.2007.07.027
  15. A. Veawab, P. Tontiwachwuthikul and A. Chakma, Ind. Eng. Chem. Res., 38(1), 310 (1999). https://doi.org/10.1021/ie980325c
  16. S. Ma'mun, H. F. Svendsen, K.A. Hoff and O. Juliussen, Energy Conver. Manage., 48(1), 251 (2007). https://doi.org/10.1016/j.enconman.2006.04.007
  17. I. R. Soosaiprakasam and A. Veawab, International J. Greenhouse Gas Control, 2(4), 553 (2008). https://doi.org/10.1016/j.ijggc.2008.02.009
  18. Chemical Compositions of SAE Carbon Steels, http://www.kspipe.com/datacenter-6.htm.
  19. M. S. DuPart, T. R. Bacon and D. J. Edwards, Hydrocarbon Processing, 72(4), 75 (1993).
  20. A. Veawab, P. Tontiwachwuthikul and A. Chakma, Ind. Eng. Chem. Res., 38(10), 3917 (1999). https://doi.org/10.1021/ie9901630
  21. A. Veawab, P. Tontiwachwuthikul and S. D. Bhole, Chem. Eng. Commun., 144, 65 (1996). https://doi.org/10.1080/00986449608936445
  22. A. Veawab, P. Tontiwachwuthikul and S. D. Bhole, Ind. Eng. Chem. Res., 36(1), 264 (1997). https://doi.org/10.1021/ie9504563
  23. D.M. Austgen, G. T. Rochelle, P. Xiao and C. C. Chen, Ind. Eng. Chem. Res., 28(7), 1060 (1989). https://doi.org/10.1021/ie00091a028
  24. S. Lee, H. J. Song, S. Maken and J.W. Park, Ind. Eng. Chem. Res., 46(5), 1578 (2007). https://doi.org/10.1021/ie061270e
  25. M. Nainar and A. Veawab, Energy Procedia, 1(1), 231 (2009). https://doi.org/10.1016/j.egypro.2009.01.033
  26. J. T. Cullinane and G. R. Rochelle, Chem. Eng. Sci., 59(17), 3619 (2004). https://doi.org/10.1016/j.ces.2004.03.029
  27. L. Rob, The promoter effect of piperazine on the removal of carbon dioxide, 7th January (2004).
  28. J. Oexmann, C. Hensel and A. Kather, International J. Greenhouse Gas Control, 2(4), 539 (2008). https://doi.org/10.1016/j.ijggc.2008.04.002
  29. A. Veawab, P. Tontiwachwuthikul and A. Chakma, Ind. Eng. Chem. Res., 40(22), 4771 (2001). https://doi.org/10.1021/ie010248c

Cited by

  1. Density, Viscosity, Heat Capacity, Surface Tension, and Solubility of CO2 in Aqueous Solutions of Potassium Serinate vol.56, pp.4, 2010, https://doi.org/10.1021/je101144k
  2. Equimolar Carbon Dioxide Absorption by Ether Functionalized Imidazolium Ionic Liquids vol.33, pp.7, 2012, https://doi.org/10.5012/bkcs.2012.33.7.2325
  3. New Process Concepts for CO2 Capture based on Precipitating Amino Acids vol.37, pp.None, 2010, https://doi.org/10.1016/j.egypro.2013.05.213
  4. An Electrochemically-mediated Gas Separation Process for Carbon Abatement vol.37, pp.None, 2010, https://doi.org/10.1016/j.egypro.2013.05.214
  5. Physical Properties of Aqueous Blends of Sodium Glycinate (SG) and Piperazine (PZ) as a Solvent for CO2 Capture vol.58, pp.3, 2010, https://doi.org/10.1021/je301091z
  6. Effect of Organic Inhibitors in Aqueous Potassium Carbonate on the Corrosion of Carbon Steel vol.47, pp.6, 2010, https://doi.org/10.1252/jcej.13we053
  7. 글리신 금속염 함침 입자상 활성탄의 저농도 이산화탄소 흡착능 평가연구 vol.30, pp.1, 2010, https://doi.org/10.5572/kosae.2014.30.1.068
  8. Analysis of Physicochemical Properties of Aqueous Sodium Glycinate (SG) Solutions at Low Concentrations from 0.1-2.0 M vol.14, pp.10, 2010, https://doi.org/10.3923/jas.2014.1055.1060
  9. Impact of Soil Composition and Electrochemistry on Corrosion of Rock-cut Slope Nets along Railway Lines in China vol.5, pp.None, 2010, https://doi.org/10.1038/srep14939
  10. Surface Impregnation of Glycine to Activated Carbon Adsorbents for Dry Capture of Carbon Dioxide vol.10, pp.2, 2010, https://doi.org/10.5572/ajae.2016.10.2.099
  11. Investigation of Thermodynamic Properties on CO2 Absorbents Blended with Ammonia, Amino Acids, and Corrosion Inhibitors at 313.15, 333.15, and 353.15 K vol.63, pp.8, 2010, https://doi.org/10.1021/acs.jced.8b00175
  12. 배가스 중 CO2 분리/회수로의 응용을 위한 CO2 및 N2 하이드로퀴논 크러스레이트의 형성 거동 연구 vol.30, pp.3, 2010, https://doi.org/10.7316/khnes.2019.30.3.289
  13. Understanding Carbamate Formation Reaction Thermochemistry of Amino Acids as Solvents for Postcombustion CO2 Capture vol.123, pp.40, 2010, https://doi.org/10.1021/acs.jpcb.9b06447
  14. Differentiation of Chemisorption and Physisorption of Carbon Dioxide on Imidazolium-type Poly(ionic liquid) Brushes vol.35, pp.4, 2010, https://doi.org/10.1007/s11595-020-2317-2
  15. Sorbents for the Capture of CO2 and Other Acid Gases: A Review vol.60, pp.26, 2010, https://doi.org/10.1021/acs.iecr.1c00597