DOI QR코드

DOI QR Code

The Role of Epithelial-mesenchymal Transition in the Gastroenterology

소화기 영역에서 Epithelial-mesenchymal Transition의 역할

  • Kim, Sung-Moo (Department of Internal Medicine, Chungbuk National University College of Medicine) ;
  • Han, Joung-Ho (Department of Internal Medicine, Chungbuk National University College of Medicine) ;
  • Park, Seon-Mee (Department of Internal Medicine, Chungbuk National University College of Medicine)
  • 김성무 (충북대학교 의과대학 내과학교실) ;
  • 한정호 (충북대학교 의과대학 내과학교실) ;
  • 박선미 (충북대학교 의과대학 내과학교실)
  • Published : 2010.08.25

Abstract

The epithelial-mesenchymal transition (EMT) plays physiologic roles in the embryogenesis, wound healing, and tissue regeneration. In terms of pathological direction, it causes organ fibrosis, cancer development, progression, metastasis, and chemoresistance. Recently, the underlying mechanism of EMT and many kinds of EMT regulators have been identified. Pharmaceutical treatment strategies which target EMT pathway could be applied for the prevention of tissue fibrosis and cancer progression. In the field of gastroenterology, profuse evidences have been collected about the critical roles of EMT in cancers of the gastrointestinal tract, liver, and pancreas and hepatic fibrosis. However, EMT varies widely among cancer types, and much remains to be identified about the main regulators of EMT in a specific disease. In this review, we present recent research results regarding the roles of EMT in cancers and organic fibrosis, especially in the area of gastroenterology.

Keywords

References

  1. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 2009;119:1429-1437. https://doi.org/10.1172/JCI36183
  2. Klymkowsky MW, Savagner P. Epithelial-mesenchymal transition: a cancer researcher's conceptual friend and foe. Am J Pathol 2009;174:1588-1593. https://doi.org/10.2353/ajpath.2009.080545
  3. Kalluri R. EMT: when epithelial cells decide to become mesenchymal- like cells. J Clin Invest 2009;119:1417-1419. https://doi.org/10.1172/JCI39675
  4. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009;139:871-890. https://doi.org/10.1016/j.cell.2009.11.007
  5. Cordon-Cardo C, Prives C. At the crossroads of inflammation and tumorigenesis. J Exp Med 1999;190:1367-1370. https://doi.org/10.1084/jem.190.10.1367
  6. Lopez-Novoa JM, Nieto MA. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med 2009;1:303-314. https://doi.org/10.1002/emmm.200900043
  7. Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 2009;119:1438-1449. https://doi.org/10.1172/JCI38019
  8. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol 2008;214:199-210. https://doi.org/10.1002/path.2277
  9. Wells A, Yates C, Shepard CR. E-cadherin as an indicator of mesenchymal to epithelial reverting transitions during the metastatic seeding of disseminated carcinomas. Clin Exp Metastasis 2008;25:621-628. https://doi.org/10.1007/s10585-008-9167-1
  10. Thompson EW, Williams ED. EMT and MET in carcinoma-clinical observations, regulatory pathways and new models. Clin Exp Metastasis 2008;25:591-592. https://doi.org/10.1007/s10585-008-9189-8
  11. Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008;133:704-715. https://doi.org/10.1016/j.cell.2008.03.027
  12. Kajiyama H, Shibata K, Terauchi M, et al. Chemoresistance to paclitaxel induces epithelial-mesenchymal transition and enhances metastatic potential for epithelial ovarian carcinoma cells. Int J Oncol 2007;31:277-283.
  13. Yang AD, Fan F, Camp ER, et al. Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clin Cancer Res 2006;12:4147-4153. https://doi.org/10.1158/1078-0432.CCR-06-0038
  14. Hiscox S, Jiang WG, Obermeier K, et al. Tamoxifen resistance in MCF7 cells promotes EMT-like behavior and involves modulation of beta-catenin phosphorylation. Int J Cancer 2006;118:290-301. https://doi.org/10.1002/ijc.21355
  15. Hiscox S, Morgan L, Barrow D, Dutkowskil C, Wakeling A, Nicholson RI. Tamoxifen resistance in breast cancer cells is accompanied by an enhanced motile and invasive phenotype: inhibition by gefitinib ('Iressa', ZD1839). Clin Exp Metastasis 2004;21:201-212. https://doi.org/10.1023/B:CLIN.0000037697.76011.1d
  16. Fuchs BC, Fujii T, Dorfman JD, et al. Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res 2008;68:2391-2399. https://doi.org/10.1158/0008-5472.CAN-07-2460
  17. Guarino M, Rubino B, Ballabio G. The role of epithelial-mesenchymal transition in cancer pathology. Pathology 2007; 39:305-318. https://doi.org/10.1080/00313020701329914
  18. Iwatsuki M, Mimori K, Yokobori T, et al. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci 2010;101:293-299. https://doi.org/10.1111/j.1349-7006.2009.01419.x
  19. Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res 2009;19:156-172. https://doi.org/10.1038/cr.2009.5
  20. Bracken CP, Gregory PA, Khew-Goodall Y, Goodall GJ. The role of microRNAs in metastasis and epithelial-mesenchymal transition. Cell Mol Life Sci 2009;66:1682-1699. https://doi.org/10.1007/s00018-009-8750-1
  21. Schneider M, Hansen JL, Sheikh SP. S100A4: a common mediator of epithelial-mesenchymal transition, fibrosis and regeneration in diseases? J Mol Med 2008;86:507-522. https://doi.org/10.1007/s00109-007-0301-3
  22. Voulgari A, Pintzas A. Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta 2009;1796:75-90.
  23. Iredale JP. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J Clin Invest 2007;117:539-548. https://doi.org/10.1172/JCI30542
  24. Choi SS, Diehl AM. Epithelial-to-mesenchymal transitions in the liver. Hepatology 2009;50:2007-2013. https://doi.org/10.1002/hep.23196
  25. Aroeira LS, Aguilera A, Sánchez-Tomero JA, et al. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J Am Soc Nephrol 2007;18: 2004-2013. https://doi.org/10.1681/ASN.2006111292
  26. Natalwala A, Spychal R, Tselepis C. Epithelial-mesenchymal transition mediated tumourigenesis in the gastrointestinal tract. World J Gastroenterol 2008;14:3792-3797. https://doi.org/10.3748/wjg.14.3792
  27. Uchikado Y, Natsugoe S, Okumura H, et al. Slug Expression in the E-cadherin preserved tumors is related to prognosis in patients with esophageal squamous cell carcinoma. Clin Cancer Res 2005;11:1174-1180.
  28. Natsugoe S, Uchikado Y, Okumura H, et al. Snail plays a key role in E-cadherin preserved esophageal squamous cell carcinoma. Oncol Rep 2007;17:517-523.
  29. Yuen HF, Chan YP, Wong ML, et al. Upregulation of Twist in esophageal squamous cell carcinoma is associated with neoplastic transformation and distant metastasis. J Clin Pathol 2007;60:510-514.
  30. Jethwa P, Naqvi M, Hardy RG, et al. Overexpression of Slug is associated with malignant regression of esophageal adenocarcinoma. World J Gastroenterol 2008;14:1044-1052. https://doi.org/10.3748/wjg.14.1044
  31. Rosivatz E, Becker KF, Kremmer E, et al. Expression and nuclear localization of Snail, an E-cadherin repressor, in adenocarcinomas of the upper gastrointestinal tract. Virchows Arch 2006;448:277-287. https://doi.org/10.1007/s00428-005-0118-9
  32. Kim MA, Lee HS, Lee HE, Kim JH, Yang HK, Kim WH. Prognostic importance of epithelial-mesenchymal transition-related protein expression in gastric carcinoma. Histopathology 2009;54:442-451. https://doi.org/10.1111/j.1365-2559.2009.03247.x
  33. Rosivatz E, Becker I, Specht K, et al. Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol 2002;161:1881-1891. https://doi.org/10.1016/S0002-9440(10)64464-1
  34. Yang Z, Zhang X, Gang H, et al. Up-regulation of gastric cancer cell invasion by Twist is accompanied by N-cadherin and fibronectin expression. Biochem Biophys Res Commun 2007;358:925-930. https://doi.org/10.1016/j.bbrc.2007.05.023
  35. Castro Alves C, Rosivatz E, Schott C, et al. Slug is overexpressed in gastric carcinomas and may act synergistically with SIP1 and Snail in the down-regulation of E-cadherin. J Pathol 2007;211:507-515. https://doi.org/10.1002/path.2138
  36. Yan F, Cao H, Chaturvedi R, et al. Epidermal growth factor receptor activation protects gastric epithelial cells from Helicobacter pylori-induced apoptosis. Gastroenterology 2009;136: 1297-1307. https://doi.org/10.1053/j.gastro.2008.12.059
  37. Yin Y, Grabowska AM, Clarke PA, et al. Helicobacter pylori potentiates epithelial:mesenchymal transition in gastric cancer: links to soluble HB-EGF, gastrin and matrix metalloproteinase- 7. Gut 2010;59:1037-1045. https://doi.org/10.1136/gut.2009.199794
  38. Ohta H, Aoyagi K, Fukaya M, et al. Cross talk between hedgehog and epithelial-mesenchymal transition pathways in gastric pit cells and in diffuse-type gastric cancers. Br J Cancer 2009;100:389-398. https://doi.org/10.1038/sj.bjc.6604846
  39. Wheeler JM, Kim HC, Efstathiou JA, Ilyas M, Mortensen NJ, Bodmer WF. Hypermethylation of the promoter region of the E-cadherin gene (CDH1) in sporadic and ulcerative colitis associated colorectal cancer. Gut 2001;48:367-371. https://doi.org/10.1136/gut.48.3.367
  40. Roy HK, Smyrk TC, Koetsier J, Victor TA, Wali RK. The transcriptional repressor SNAIL is overexpressed in human colon cancer. Dig Dis Sci 2005;50:42-46. https://doi.org/10.1007/s10620-005-1275-z
  41. Shioiri M, Shida T, Koda K, et al. Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. Br J Cancer 2006;94:1816-1822. https://doi.org/10.1038/sj.bjc.6603193
  42. Hong R, Choi DY, Lim SC, Suh CH, Kee KH, Lee MJ. The differential expressions of the epithelial-mesenchymal transition regulator, Slug and the cell adhesion molecule, E-cadherin in colorectal adenocarcinoma. Korean J Pathol 2008; 42:351-357.
  43. Jang TJ, Jeon KH, Jung KH. Cyclooxygenase-2 expression is related to the epithelial-to-mesenchymal transition in human colon cancers. Yonsei Med J 2009;50:818-824. https://doi.org/10.3349/ymj.2009.50.6.818
  44. Spaderna S, Schmalhofer O, Hlubek F, et al. A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology 2006;131:830-840. https://doi.org/10.1053/j.gastro.2006.06.016
  45. Yang MH, Chen CL, Chau GY, et al. Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma. Hepatology 2009;50: 1464-1474. https://doi.org/10.1002/hep.23221
  46. Jiao W, Miyazaki K, Kitajima Y. Inverse correlation between E-cadherin and Snail expression in hepatocellular carcinoma cell lines in vitro and in vivo. Br J Cancer 2002;86:98-101. https://doi.org/10.1038/sj.bjc.6600017
  47. Sugimachi K, Tanaka S, Kameyama T, et al. Transcriptional repressor snail and progression of human hepatocellular carcinoma. Clin Cancer Res 2003;9:2657-2664.
  48. Miyoshi A, Kitajima Y, Sumi K, et al. Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer 2004;90:1265-1273. https://doi.org/10.1038/sj.bjc.6601685
  49. Lee TK, Poon RT, Yuen AP, et al. Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition. Clin Cancer Res 2006;12:5369-5376. https://doi.org/10.1158/1078-0432.CCR-05-2722
  50. Battaglia S, Benzoubir N, Nobilet S, et al. Liver cancer- derived hepatitis C virus core proteins shift TGF-beta responses from tumor suppression to epithelial-mesenchymal transition. PLoS ONE 2009;4:e4355 https://doi.org/10.1371/journal.pone.0004355
  51. Fransvea E, Angelotti U, Antonaci S, Giannelli G. Blocking transforming growth factor-beta up-regulates E-cadherin and reduces migration and invasion of hepatocellular carcinoma cells. Hepatology 2008;47:1557-1566. https://doi.org/10.1002/hep.22201
  52. Mazzocca A, Fransvea E, Dituri F, Lupo L, Antonaci S, Giannelli G. Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma. Hepatology 2010;51:523-534. https://doi.org/10.1002/hep.23285
  53. Mazzocca A, Fransvea E, Lavezzari G, Antonaci S, Giannelli G. Inhibition of transforming growth factor beta receptor I kinase blocks hepatocellular carcinoma growth via neo-angiogenesis regulation. Hepatology 2009;50:1140-1151. https://doi.org/10.1002/hep.23118
  54. Fransvea E, Mazzocca A, Antonaci S, Giannelli G. Targeting transforming growth factor (TGF)-betaRI inhibits activation of beta1 integrin and blocks vascular invasion in hepatocellular carcinoma. Hepatology 2009;49:839-850. https://doi.org/10.1002/hep.22731
  55. Hotz B, Arndt M, Dullat S, Bhargava S, Buhr HJ, Hotz HG. Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res 2007;13:4769-4776. https://doi.org/10.1158/1078-0432.CCR-06-2926
  56. Imamichi Y, Konig A, Gress T, Menke A. Collagen type I-induced Smad-interacting protein 1 expression downregulates E-cadherin in pancreatic cancer. Oncogene 2007;26:2381- 2385. https://doi.org/10.1038/sj.onc.1210012
  57. Ohuchida K, Mizumoto K, Ohhashi S, et al. Twist, a novel oncogene, is upregulated in pancreatic cancer: clinical implication of Twist expression in pancreatic juice. Int J Cancer 2007;120:1634-1640. https://doi.org/10.1002/ijc.22295
  58. Cates JM, Byrd RH, Fohn LE, Tatsas AD, Washington MK, Black CC. Epithelial-mesenchymal transition markers in pancreatic ductal adenocarcinoma. Pancreas 2009;38:e1-6. https://doi.org/10.1097/MPA.0b013e3181878b7f
  59. Shah AN, Summy JM, Zhang J, Park SI, Parikh NU, Gallick GE. Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol 2007;14:3629-3637. https://doi.org/10.1245/s10434-007-9583-5
  60. Wang Z, Li Y, Kong D, et al. Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res 2009;69:2400-2407. https://doi.org/10.1158/0008-5472.CAN-08-4312
  61. Zeisberg M, Yang C, Martino M, et al. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem 2007;282:23337-23347. https://doi.org/10.1074/jbc.M700194200
  62. Omenetti A, Porrello A, Jung Y, et al. Hedgehog signaling regulates epithelial-mesenchymal transition during biliary fibrosis in rodents and humans. J Clin Invest 2008;118:3331-3342.
  63. Harada K, Sato Y, Ikeda H, et al. Epithelial-mesenchymal transition induced by biliary innate immunity contributes to the sclerosing cholangiopathy of biliary atresia. J Pathol 2009;217:654-664. https://doi.org/10.1002/path.2488
  64. Syn WK, Jung Y, Omenetti A, et al. Hedgehog-mediated epithelial- to-mesenchymal transition and fibrogenic repair in nonalcoholic fatty liver disease. Gastroenterology 2009;137:1478-1488. https://doi.org/10.1053/j.gastro.2009.06.051

Cited by

  1. Hippocampus abdominalis 유래 단백질 가수분해물의 간 보호 효과 vol.59, pp.3, 2010, https://doi.org/10.3839/jabc.2016.046
  2. 간암세포주 Huh7에서 Hepatitis B virus X protein에 의한 간섬유화 vol.59, pp.1, 2010, https://doi.org/10.3839/jabc.2016.006
  3. S100A11 promotes TGF-β1-induced epithelial-mesenchymal transition through SMAD2/3 signaling pathway in intrahepatic cholangiocarcinoma vol.14, pp.9, 2010, https://doi.org/10.2217/fon-2017-0534
  4. 간암세포주에서 상피간엽전환억제를 통한 Silymarin의 침윤 및 전이 억제 효과 vol.50, pp.3, 2010, https://doi.org/10.15324/kjcls.2018.50.3.337
  5. Stationed or Relocating: The Seesawing EMT/MET Determinants from Embryonic Development to Cancer Metastasis vol.9, pp.9, 2010, https://doi.org/10.3390/biomedicines9091265