DOI QR코드

DOI QR Code

The Optical Design of Probe-type Microscope Objective for Intravital Laser Scanning CARS Microendoscopy

  • Received : 2010.10.05
  • Accepted : 2010.11.15
  • Published : 2010.12.25

Abstract

A stack of gradient-index (GRIN) rod lenses cannot be used for coherent anti-Stokes Raman scattering (CARS) microendoscopy for insertion to internal organs through a surgical keyhole with minimal invasiveness. That's because GRIN lens has large amount of inherent chromatic aberrations in spite of absolutely requiring a common focus for pump and Stokes beam with each frequency of ${\omega}_p$ and ${\omega}_S$. For this endoscopic purpose, we need to develop a long slender probe-type objective, namely probe-type microscope objective (PMO). In this paper, we introduce the structure, the working principle, and the design techniques of PMO which is composed of a probe-type lens module (PLM) and an adaptor lens module (ALM). PLM is first designed for a long slender type and ALM is successively designed by using several design parameters from PLM for eliminating optical discords between scanning unit and PLM. A combined module is optimized again to eliminate some coupling disparities between PLM and ALM for the best PMO. As a result, we can obtain a long slender PMO with perfectly diffraction-limited performance for pump beam of 817 nm and Stokes beam of 1064 nm.

Keywords

References

  1. S. J. Jang, J. H. Kang, K. I. Kim, T. S. Lee, Y. J. Lee, K. C. Lee, K. S. Woo, W. S. Chung, H. C. Kwon, C. J. Ryu, T. H. Choi, C. W. Choi, S. M. Lim, and G. J. Cheon, “Application of bioluminescence imaging to therapeutic intervention of herpes simplex virus type I - thymidine kinase/ganciclovir in glioma,” Cancer Letters 297, 84-90 (2010). https://doi.org/10.1016/j.canlet.2010.04.028
  2. Y. Waerzeggers, P. Monfared, T. Viel, A. Winkeler, and A. H. Jacobs, “Mouse models in neurological disorders: applications of non-invasive imaging,” Biochimica et Biophysica Acta–Molecular Basis of Disease 1802, 819-839 (2010). https://doi.org/10.1016/j.bbadis.2010.04.009
  3. B. W. Pogue, K. S. Samkoe, S. L. Gibbs-Strauss, and S. C. Davis, “Fluorescent molecular imaging and dosimetry tools in photodynamic therapy,” Methods in Molecular Biology 635, 207-222 (2010). https://doi.org/10.1007/978-1-60761-697-9_15
  4. N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329, 967-971 (2010). https://doi.org/10.1126/science.1189428
  5. S. J. Wallace, J. L. Morrison, K. J. Botting, and T. W. Kee, “Second-harmonic generation and two-photon-excited autofluorescence microscopy of cardiomyocytes: quantification of cell volume and myosin filaments,” ZJournal of Biomedical Optics 13, 064018 (2008). https://doi.org/10.1117/1.3027970
  6. C. Fiorini-Debuisschert, I. Berline, G. Metge, F. Charra, M. Mihaly, C. Allain, G. Bordeau, and M. P. Teulade-Fichou, “Two-photon microscopy: from the optimisation of fluorescent DNA labels to local probe scanning second harmonic generation microscopy,” Nonlinear Optics Quantum Optics 38, 271-280 (2009).
  7. D. Ait-Belkacem, A. Gasecka, F. Munhoz, S. Brustlein, and S. Brasselet, “Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging,” Opt. Express 18, 14467-14473 (2010). https://doi.org/10.1364/OE.18.014467
  8. Y. Sartenaer, L. Dreesen, C. Humbert, C. Volcke, G. Tourillon, P. Louette, P. A. Thiry, and A. Peremans, “Adsorption properties of decyl thiocyanate and decanethiol on platinum substrates studied by sum-frequency generation spectroscopy,” Surface Science 601, 1259-1264 (2007). https://doi.org/10.1016/j.susc.2006.12.066
  9. Y. S. Yoo, D. H. Lee, and H. Cho, “Differential two-signal picosecond-pulse coherent anti-Stokes Raman scattering imaging microscopy by using a dual-mode optical parametric oscillator,” Opt. Lett. 32, 3254-3256 (2007). https://doi.org/10.1364/OL.32.003254
  10. F. Lu, W. Zheng, and Z. Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett. 34, 1870-1872 (2009). https://doi.org/10.1364/OL.34.001870
  11. K. M. Hajek, B. Littleton, D. Turk, T. J. McIntyre, and H. Rubinsztein-Dunlop, “A method for achieving super-resolved widefield CARS microscopy,” Opt. Express 18, 19263-19272 (2010). https://doi.org/10.1364/OE.18.019263
  12. C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Strokes Raman scattering microscopy,” Proceedings of the National Academy of Sciences of the United States of America 102, 16807-16812 (2005). https://doi.org/10.1073/pnas.0508282102
  13. R. S. Lim, A. Kratzer, N. P. Barry, S. Miyazaki-Anzai, M. Miyazaki, W. W. Mantulin, M. Levi, E. O. Potma, and B. J. Tromberg, “Multimodal CARS microscopy determination of the impact of diet on macrophage infiltration and lipid accumulation on plaque formation in ApoE-deficient mice,” Journal of Lipid Research 51, 1729-1737 (2010). https://doi.org/10.1194/jlr.M003616
  14. W. Gobel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett. 29, 2521-2523 (2004). https://doi.org/10.1364/OL.29.002521
  15. M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” Journal of Neurophysiology 91, 1908-1912 (2004). https://doi.org/10.1152/jn.01007.2003
  16. J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using oneand two-photon fluorescence microendoscopy,” Journal of Neurophysiology 92, 3121-3133 (2004). https://doi.org/10.1152/jn.00234.2004
  17. P. Kim, M. Puoris’haag, D. Cote, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” Journal of Biomedical Optics 13, 010501 (2008). https://doi.org/10.1117/1.2839043
  18. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nature Methods 2, 941-950 (2005). https://doi.org/10.1038/nmeth820
  19. H. Wang, T. B. Huff, Y. Fu, K. Y. Jia, and J. X. Cheng, “Increasing the imaging depth of coherent anti-Stokes Raman scattering microscopy with a miniature microscope objective,” Opt. Lett. 32, 2212-2214 (2007). https://doi.org/10.1364/OL.32.002212
  20. R. L. Harzic, I. Riemann, M. Weinigel, K. König, and B. Messerschmidt, “Rigid and high-numerical-aperture two-photon fluorescence endoscope,” Appl. Opt. 48, 3396-3400 (2009). https://doi.org/10.1364/AO.48.003396
  21. C. S. Rim, “Design of an endoscope objective lens with a high numerical aperture and a minimally-invasive outer diameter,” J. Korean Phys. Soc. 51, 52-64 (2007). https://doi.org/10.3938/jkps.51.52
  22. X. Chen and N. George, “Resolution analysis of a gradientindex rod and a gradient-index lens array,” Appl. Opt. 47, 6190-6201 (2008). https://doi.org/10.1364/AO.47.006190
  23. J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Epidetected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” Journal of Physical Chemistry B 105, 1277-1280 (2001). https://doi.org/10.1021/jp003774a
  24. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7, 350-352 (1982). https://doi.org/10.1364/OL.7.000350
  25. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142-4145 (1999). https://doi.org/10.1103/PhysRevLett.82.4142
  26. H. Alencar, U. Mahmood, Y. Kawano, T. Hirata, and R. Weissleder, “Novel multiwavelength microscopic scanner for mouse imaging,” Neoplasia 7, 977-983 (2005). https://doi.org/10.1593/neo.05376
  27. J. X. Cheng, “Coherent anti-Stokes Raman scattering microscopy,” Applied Spectroscopy 61, 197A-208A (2007). https://doi.org/10.1366/000370207781746044
  28. Optical Research Associates, Inc., “CODE V version 10.0,” http://www.opticalres.com.
  29. W. J. Smith, Modern Optical Engineering (MacGraw-Hill, NY, USA, 2001), Chapter 6.
  30. J.-U. Lee and S.-M. Yu, “Analytic design procedure of three-mirror telescope corrected for spherical aberration, coma, astigmatism, and Petzval field curvature,” J. Opt. Soc. Korea 13, 184-192 (2009). https://doi.org/10.3807/JOSK.2009.13.2.184
  31. Gyeong-Il Kweon, “Panoramic image composed of multiple rectilinear images generated from a single fisheye image,” J. Opt. Soc. Korea 14, 109-120 (2010). https://doi.org/10.3807/JOSK.2010.14.2.109

Cited by

  1. Non-imaging Optical Design of a Measurement Probe for LCD Display Used in a Color Analyzer vol.22, pp.5, 2011, https://doi.org/10.3807/KJOP.2011.22.5.239
  2. Design and Fabrication of a Multi-modal Confocal Endo-Microscope for Biomedical Imaging vol.15, pp.3, 2011, https://doi.org/10.3807/JOSK.2011.15.3.300