DOI QR코드

DOI QR Code

Dual-wavelength Digital Holography Microscope for BGA Measurement Using Partial Coherence Sources

  • Received : 2011.07.11
  • Accepted : 2011.09.27
  • Published : 2011.12.25

Abstract

Dual-wavelength holography has a better axial range than single-wavelength holography, allowing unambiguous phase imaging. Partial coherence sources reduce coherent noise, resulting in improved reconstructed images. We measured a ball-grid array using dual-wavelength holography with partial coherence sources. This holography method is useful for measurement samples that exhibit coherence noise and have a step height larger than the single wavelength used in holography.

Keywords

References

  1. E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994-7001 (1999). https://doi.org/10.1364/AO.38.006994
  2. L. Xu, X. Peng, Z. Guo, J. Miao, and A. Asundi, "Studies of digital microscopy with application to microstructure testing," Appl. Opt. 40, 5046-5051 (2001). https://doi.org/10.1364/AO.40.005046
  3. M. Jeong, N. Kim, and J. H. Park, "Elemental image synthesis for integral imaging using phase-shifting digital holography," J. Opt. Soc. Korea 12, 275-280 (2008). https://doi.org/10.3807/JOSK.2008.12.4.275
  4. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavski, "Reconstruction of hologram with a computer," Sov. Phys. Tech. 17, 434-444 (1972).
  5. L. P. Yaroslavskii and N. S. Merzlyakov, Methods of Digital Holography (Consultants Bureau, New York, USA, 1980).
  6. L. Onural and P. D. Scott, "Digital decoding of in-line holograms," Opt. Eng. 26, 1124-1132 (1987).
  7. J. W. Goodman, Introduction to Fourier Optics, 2nd ed., J. Goodman, ed. (McGraw Hill, New York, USA, 2005), Chapter 9.
  8. U. Schnars and W. Juepther, Digital Holography, U. Schnars and W. Juepther, ed. (Springer, Heidelberg, Germany, 2005).
  9. L. Xu, J. Miao, and A. Asundi, "Properties of digital holography based on in-line configuration," Opt. Eng. 39, 3214-3219 (1999).
  10. C. Depeursinge, Digital Holography and Three-dimensional Display, T. C. Poon, ed. (Springer, New York, USA, 2006).
  11. D. Kim, B. J. Baek, Y. D. Kim, and B. Javidi, "3D nano object recognition based on phase measurement technique," J. Opt. Soc. Korea 11, 108-112 (2007). https://doi.org/10.3807/JOSK.2007.11.3.108
  12. S. Shin and Y. Yu, "Three-dimensional information and refractive index measurement using a two-wave digital holographic," J. Opt. Soc. Korea 10, 173-177 (2006). https://doi.org/10.3807/JOSK.2009.13.2.173
  13. C. Polhemus, "Two-wavelength interferometry," Appl. Opt. 12, 2071-2074 (1973). https://doi.org/10.1364/AO.12.002071
  14. J. Gass, A. Dako, and M. K. Kim, "Phase imaging without 2pi ambiguity by multiwavelength digital holography," Opt. Lett. 28, 1141-1143 (2003). https://doi.org/10.1364/OL.28.001141
  15. Y. Fu, G. Pedrini, B. Hennelly, R. Groves, and W. Osten, "Dual-wavelength image-plane digital holography for dynamic measurement," Opt. Laser Technol. 47, 552-557 (2008).
  16. K. Creath, Y. Cheng, and J. C. Wyant, "Contouring aspheric surfaces using two-wavelength phase-shifting interferometry," Opt. Acta 32, 1455-1464 (1985). https://doi.org/10.1080/713821689
  17. F. Dubois, L. Joannes, and J. C. Legros, "Improved threedimensional imaging with a digital holography microscope with a source of partial spatial coherence," Appl. Opt. 38, 7085-7094 (1999). https://doi.org/10.1364/AO.38.007085
  18. F. Dubois, M. L. Requena, C. Minetti, O. Monnom, and E. Istasse, "Partial spatial coherence effects in digital holographic microscopy with a laser source," Appl. Opt. 43, 1131-1139 (2004). https://doi.org/10.1364/AO.43.001131
  19. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, "Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation," Appl. Opt. 45, 851-863 (2006). https://doi.org/10.1364/AO.45.000851
  20. S. Shin, D. Kim, and Y. Yu, "Study on digital holography with conjugated hologram," Korean J. Opt. Photon. 21, 146-150 (2010). https://doi.org/10.3807/KJOP.2010.21.4.146
  21. T. Colomb, J. Kuhn, F. Charriere, and C. Depeursinge, "Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram," Opt. Express 14, 4300-4304 (2006). https://doi.org/10.1364/OE.14.004300
  22. J. W. Goodman, Statistical Optics J. Goodman, ed. (Wiley, New York, USA, 1985), Chapter 5.

Cited by

  1. Determining Two-Sided Surface Profiles of Micro-Optical Elements Using a Dual-Wavelength Digital Holographic Microscope With Liquids vol.18, pp.5, 2014, https://doi.org/10.3807/JOSK.2014.18.5.495
  2. Linear programming phase unwrapping for dual-wavelength digital holography vol.56, pp.3, 2017, https://doi.org/10.1364/AO.56.000424
  3. Aspheric Lens Measurements by Digital Holographic Microscopy and Liquid vol.24, pp.6, 2013, https://doi.org/10.3807/KJOP.2013.24.6.318
  4. A Study on Two-wavelength Digital Holography Using the Fresnel-Bluestein Transform vol.23, pp.6, 2012, https://doi.org/10.3807/KJOP.2012.23.6.251
  5. Improving Phase Contrast of Digital Holographic Microscope using Spatial Light Modulator vol.19, pp.1, 2015, https://doi.org/10.3807/JOSK.2015.19.1.022
  6. Determining the Refractive Index and Three-Dimensional Shape of an Optical Component using Digital Holographic Microscopy with Liquid vol.25, pp.3, 2014, https://doi.org/10.3807/KJOP.2014.25.3.137
  7. Study on Quantitative Phase Imaging by Dual-Wavelength Digital Holography Microscopy vol.2018, pp.1687-9392, 2018, https://doi.org/10.1155/2018/2312137
  8. Fine Metal Mask 3-Dimensional Measurement by using Scanning Digital Holographic Microscope vol.72, pp.8, 2018, https://doi.org/10.3938/jkps.72.863