DOI QR코드

DOI QR Code

Simulation of the Effects of the A1B Climate Change Scenario on the Potential Yield of Winter Naked Barley in Korea

A1B 기후변화 시나리오가 국내 가을 쌀보리의 잠재수량에 미치는 영향 모사

  • Shim, Kyo-Moon (Division of Climate Change & Agro-ecology, National Academy of Agricultural Science) ;
  • Min, Sung-Hyun (Division of Climate Change & Agro-ecology, National Academy of Agricultural Science) ;
  • Lee, Deog-Bae (Division of Climate Change & Agro-ecology, National Academy of Agricultural Science) ;
  • Kim, Gun-Yeob (Division of Climate Change & Agro-ecology, National Academy of Agricultural Science) ;
  • Jeong, Hyun-Cheol (Division of Climate Change & Agro-ecology, National Academy of Agricultural Science) ;
  • Lee, Seul-Bi (Division of Climate Change & Agro-ecology, National Academy of Agricultural Science) ;
  • Kang, Ki-Keong (Division of Climate Change & Agro-ecology, National Academy of Agricultural Science)
  • 심교문 (국립농업과학원 농업환경부 기후변화생태과) ;
  • 민성현 (국립농업과학원 농업환경부 기후변화생태과) ;
  • 이덕배 (국립농업과학원 농업환경부 기후변화생태과) ;
  • 김건엽 (국립농업과학원 농업환경부 기후변화생태과) ;
  • 정현철 (국립농업과학원 농업환경부 기후변화생태과) ;
  • 이슬비 (국립농업과학원 농업환경부 기후변화생태과) ;
  • 강기경 (국립농업과학원 농업환경부 기후변화생태과)
  • Received : 2011.10.31
  • Accepted : 2011.12.30
  • Published : 2011.12.30

Abstract

The CERES-Barley crop simulation model was used to assess the impacts of climate change on the potential yield of winter naked barley in Korea. Fifty six sites over the southern part of the Korean Peninsula were selected to compare the climate change impacts in various climatic conditions. Based on the A1B climate change scenarios of Korea, the present climatological normal (1971-2000) and the three future ones (2011-2040, 2041-2070, and 2071-2100) were considered in this study. The three future normals were divided by three environmental conditions with changes in: (1) temperature only, (2) carbon dioxide concentration only, and (3) both temperature and carbon dioxide concentration. The agreement between the observed and simulated outcomes was reasonable with the coefficient of determination of grain yield to be 0.78. We concluded that the CERES-Barley model was suitable for predicting climate change impacts on the potential yield of winter naked barley. The effect of the increased temperature only with the climate change scenario was negative to the potential yield of winter naked barley, which ranges from -34 to -9% for the three future normals. However, the effect of the elevated carbon dioxide concentration only on the potential yield of winter naked barley was positive, ranging from 6 to 31% for the three future normals. For the elevated conditions of both temperature and carbon dioxide concentration, the potential yields increased by 8, 15, and 13% for the 2011-2040, 2041-2070, and 2071-2100 normals, respectively.

보리생육모형인 CERES-Barley 모형을 적용하여, 한반도 A1B 기후시나리오에 따른 국내 쌀보리의 잠재수량 변화를 평가하였다. 생육 모의 지역은 30년 평년의 기상자료가 구축되어 있는 56개 지역으로 하였고, 생육모의 연도는 현재 30년 평년(1971-2000년, 기준 연도)과 세가지의 미래 30년 평년(2011-2040, 2041-2070, 2071-2100년)으로 하였다. 그리고 온도 효과(온도 변화 및 $CO_2$ 농도 고정), $CO_2$ 효과(온도 고정 및 $CO_2$ 농도 변화), 온난화 효과(온도 및 $CO_2$ 농도 변화) 등 세가지 생육모의 환경으로 구분하여 기후변화에 따른 쌀보리의 잠재수량 변화를 평가하였다. CERES-Barly 모형은 국내 쌀보리의 발육단계뿐 아니라 수량을 실제 관측값과 아주 유사하게 모의하여 ($R^2$=0.78), 기후변화시나리오에 따른 쌀보리 잠재수량의 변화 예측에 활용하는데 큰 무리가 없다고 판단되었다. 온도효과 분석에서는 미래의 온도상승으로 쌀보리의 잠재수량이 크게 감소하는 것으로 평가되었다. 즉, 세가지 미래 기후조건에서 쌀보리의 평균 잠재수량은 기준연도에 비해 각각 9, 17, 34%씩 감소하는 것으로 예측되었다. 반면에, $CO_2$ 효과분석에는 세가지 미래 기후조건에서 쌀보리의 평균 잠재수량이 기준연도에 비해 각각 6, 20, 31%씩 증가하는 것으로 예측되었다. 마지막으로, 온난화 효과 분석에서는 미래 기후조건에서 쌀보리의 평균 잠재수량이 기준연도에 비해 각각 8, 15, 13%씩 증가하는 것으로 예측되었다.

Keywords

References

  1. Holden, N. M., A. J. Brereton, R. Fealy, and J. Sweeney, 2003: Possible change in Irish climate and its impact on barley and potato yields, Agricultural and Forest Meteorology 116(3-4), 181-196. https://doi.org/10.1016/S0168-1923(03)00002-9
  2. Lee, B. W., J. C. Shin, and J. H. Bong, 1991: Impact of climate change induced by the increasing atmospheric CO2 concentration on agro-climatic resources, net primary productivity and rice yield potential in Korea. Korean Journal of Crop Science 36(2), 112-126(in Korean with English abstract).
  3. Meza, F. J., and D. Silva, 2009: Dynamic adaptation of maize and wheat production to climate change. Climate change 94, 143-156 https://doi.org/10.1007/s10584-009-9544-z
  4. Shim, K. M., S. H. Yun, Y. S. Jung, J. T. Lee, and K. H. Hwang, 2002: Impact of recent weather variation on yield components and growth stages of winter barley in Korea. Korean Journal of Agricultural and Forest Meteorology 4(1), 38-48(in Korean with English abstract).
  5. Shim, K. M., K. A. Roh, K. H. So, G. Y. Kim, H. C. Jeong, and D. B. Lee, 2010: Assessing impacts of global warming on rice growth and production in Korea. Climate Change Research 1(2), 121-131(in Korean with English abstract).
  6. Shin, J. C., and M. H. Lee, 1995: Rice production in south Korea under current and future climates. In: R. B. Matthews, M. J. Kropff, D. Bachelet, and H. H. van Laar (Eds). Modeling the impact of climate change on rice production in Asia. IRRI & CAB International, Wallingford, UK. 199-215.
  7. Tuttolomondo, T., S. La Bella, G. Lecardane, and C. Leto, 2009: Simulation of the effects of climate change on barley yields in rural Italy. Proceedings, On Statistics on rural development and agriculture household income, Rome, Wye city group, 28.
  8. Yun, J. I., 1990: Analysis of the climatic impact on Korean rice production under the carbon dioxide scenario. Journal of the Korean Meteorological Society 26(4), 203-287(in Korean with English abstract).
  9. 농촌진흥청, 1986: 한국농업 기후특징과 수도 기상재해대책, 194pp.
  10. 농촌진흥청, 1999: 작황시험보고서, 141-156.
  11. 농촌진흥청, 2000: 작황시험보고서, 143-156.
  12. 농촌진흥청, 2001: 작황시험보고서, 161-176.
  13. 농촌진흥청, 2002: 작황시험보고서, 151-166.
  14. 농촌진흥청, 2003: 작황시험보고서, 135-149.
  15. 통계청, 2011: http://www.kostat.go.kr/
  16. 하용웅, 2000, 보리, 농촌진흥청 작물시험장, 거록문화사, 505 pp.

Cited by

  1. The Influence of Shifting Planting Date on Cereal Grains Production under the Projected Climate Change vol.15, pp.1, 2013, https://doi.org/10.5532/KJAFM.2013.15.1.026
  2. Requirement Analysis of a System to Predict Crop Yield under Climate Change vol.17, pp.1, 2015, https://doi.org/10.5532/KJAFM.2015.17.1.1
  3. Geographical Migration of Winter Barley in the Korean Peninsula under the RCP8.5 Projected Climate Condition vol.14, pp.4, 2012, https://doi.org/10.5532/KJAFM.2012.14.4.161
  4. An Outlook on Cereal Grains Production in South Korea Based on Crop Growth Simulation under the RCP8.5 Climate Change Scenarios vol.14, pp.3, 2012, https://doi.org/10.5532/KJAFM.2012.14.3.132
  5. Physiological Characteristics and Yield of Onion Affected by Rapid Temperature Changes vol.33, pp.4, 2014, https://doi.org/10.5338/KJEA.2014.33.4.364
  6. Grain Yield Response of CERES-Barley Adjusted for Domestic Cultivars to the Simultaneous Changes in Temperature, Precipitation, and CO2Concentration vol.15, pp.4, 2013, https://doi.org/10.5532/KJAFM.2013.15.4.312
  7. Construction of Agricultural Meteorological Data by the New Climate Change Scenario for Forecasting Agricultural Disaster - For 111 Agriculture Major Station - vol.55, pp.6, 2013, https://doi.org/10.5389/KSAE.2013.55.6.087
  8. Yearly Variation in Growth and Yield of Winter Hulless Barley at Iksan vol.61, pp.3, 2016, https://doi.org/10.7740/kjcs.2016.61.3.171
  9. Impact of high temperatures on the marketable tuber yield and related traits of potato vol.89, 2017, https://doi.org/10.1016/j.eja.2017.06.005
  10. Potential Changes in the Distribution of Seven Agricultural Indicator Plant Species in Response to Climate Change at Agroecosystem in South Korea. vol.51, pp.3, 2018, https://doi.org/10.11614/KSL.2018.51.3.221