DOI QR코드

DOI QR Code

Fungicide Spray Program to Reduce Application in Anthracnose of Strawberry

살균제 살포횟수 감소를 위한 딸기 탄저병 방제프로그램

  • Nam, Myeong-Hyeon (Nonsan Strawberry Experiment Station, Chungnam Agricultural Research and Extension Serveces) ;
  • Kim, Hyeon-Suk (Nonsan Strawberry Experiment Station, Chungnam Agricultural Research and Extension Serveces) ;
  • Nam, Yun-Gyu (Nonsan Strawberry Experiment Station, Chungnam Agricultural Research and Extension Serveces) ;
  • Peres, N.A. (Department of Plant Pathology, University of Florida) ;
  • Kim, Hong-Gi (Department of Applied Biology, Chungnam National University)
  • 남명현 (충남농업기술원 논산딸기시험장) ;
  • 김현숙 (충남농업기술원 논산딸기시험장) ;
  • 남윤규 (충남농업기술원 논산딸기시험장) ;
  • ;
  • 김홍기 (충남대학교 응용생물학과)
  • Received : 2011.10.17
  • Accepted : 2011.12.11
  • Published : 2011.12.31

Abstract

The effect of various fungicides on anthracnose of strawberry, caused by Colletotrichum gloeosporioides, was determined in vitro, and in greenhouse and field trials. The $EC_{50}$ values of benomyl were clearly different between two sensitive and resistant groups of isolates. Iminoctadine tris had lower $EC_{50}$ values than mancozeb and propineb as protective fungicides and the response of mancozeb, propineb and azoxystrobin was variable depending on the isolate. In the greenhouse, pre- and post- inoculation fungicide applications significantly reduced disease compared to the non-treated control. Propineb, mancozeb and azoxystrobin were effective in controlling the disease when applied prior to inoculation. Metconazole and prochloraz-Mn treatments as ergosterol biosynthesis-inhibiting fungicides had the lowest incidence of anthracnose. In the nursery field trials in 2009 and 2010, the reduced fungicide spray program provided similar levels of disease control compared to the calendar-based applications with captan. A reduced spray program based on efficacious fungicides such as prochloraz-Mn will be useful for strawberry growers and provide more options for controlling anthracnose in Korea.

Colletotrichum gloeosporioides에 의해 발생하는 딸기 탄저병에 대한 여러 살균제의 방제효과를 in vitro, 비닐하우스와 노지 육묘포장에서 검정하였다. Benomyl의 $EC_{50}$ 값은 균주 간에 저항성과 감수성 그룹으로 확연히 구별되었다. Iminoctadine tris는 mancozeb나 propineb과 같은 보호살균제보다 낮은 EC50값을 보였으며 mancozeb, propineb, azoxystrobin의 효과는 균주에 따라 다양한 결과를 보였다. 비닐하우스에서, 9종의 살균제를 병원균 접종 전과 후 딸기 '설향' 품종에 처리하였을 때 모든 약제는 무처리에 비해 방제효과가 좋았다. Propineb, mancozeb, azoxystrobin은 병원균 감염 전 처리 시 방제효과가 우수했던 반면 metconazole과 prochloraz-Mn와 같은 ergosterol biosynthesis inhibiting 살균제들은 낮은 탄저병 이병율을 보였다. 2009년과 2010년 노지 육묘포장에서 감소된 살균제 처리 프로그램에 따른 탄저병 방제는 captan 처리 프로그램과 비슷한 방제효과를 보였다. 따라서 prochloraz-Mn 등과 같은 탄저병에 효과적인 살균제를 기반으로 작성된 처리 프로그램은 딸기 농가에 유용하게 사용될 수 있고 탄저병 방제를 위한 더 많은 선택을 제공할 것이다.

Keywords

Acknowledgement

Grant : Cooperative Research Program for Agriculture Science & Technology Development, International Cooperative Research Project

Supported by : Rural Development Administration, Chungnam Agricultural Research & Extension Services

References

  1. de los Santos, B., de Paredes, G. and Munoz, F. R. 2002. Effect of different fungicides in the control of Colletotrichum acutatum, causal agent of anthracnose crown rot in strawberry plants. Crop Prot. 21: 11-15. https://doi.org/10.1016/S0261-2194(01)00054-0
  2. Freeman, S., Nizani, Y. S., Dotan, S., Even, S. and Sando, R. 1997. Control of Colletotrichum acutatum in strawberry under laboratory, greenhouse and field conditions. Plant Dis. 81: 749-752. https://doi.org/10.1094/PDIS.1997.81.7.749
  3. Karadimos, D. A. and Karaoglanidis, G. S. 2006. Comparative efficacy, selection of effective partners, and application time of strobilurin fungicides for control of Cercospora leaf spot of sugar beet. Plant Dis. 90: 820-825. https://doi.org/10.1094/PD-90-0820
  4. Kim, H. G. and Nam, M. H. 1999. Anthracnose of strawberry in Korea. Plant Dis. Agric. 5: 8-13. (In Korean)
  5. Kim, S. H., Choi, S. Y., Lim, Y. S., Yoon, J. T. and Choi, B. S. 2002. Effects of chemical treatment on the control of strawberry anthracnose caused by Colletotrichum sp. Res. Plant Dis. 8: 50-54. (In Korean) https://doi.org/10.5423/RPD.2002.8.1.050
  6. Kim, J. K., Lee, K. H., Min, J. Y., Kang, B. K., Rho, C. W., Hong, S. T. and Kim, H. T. 2005. Response of Colletotrichum spp. causing red pepper anthracnose to protective and ergosterol biosynthesis-inhibiting fungicides. Res. Plant Dis. 11: 185-192. (In Korean) https://doi.org/10.5423/RPD.2005.11.2.185
  7. Kim, J. T., Min, J. Y. and Kim, H. T. 2006. Response to fungicides of Colletotrichum species isolated from infected tissues of several crops. Res. Plant Dis. 12: 32−39. (In Korean) https://doi.org/10.5423/RPD.2006.12.1.032
  8. Kim, Y. S., Min, J. Y., Kang, B. K., Bach, N. V., Choi, W. B., Park, E. W. and Kim, H. T. 2007. Analyses of the less benzimidazole-sensitivity of the isolates of Colletotrichum spp. causing the anthracnose in pepper and strawberry. Plant Pathology J. 23: 187−192. https://doi.org/10.5423/PPJ.2007.23.3.187
  9. Korea Crop Protection Association. 2011. 2011 guideline for using agrichemicals. 1199 pp.
  10. Korea Rural Economic Institute. 2011. Outlook of the agriculture 2011. pp. 636-643.
  11. MacKenzie, S. J., Mertely, J. C. and Peres, N. A. 2009. Curative and protectant activity of fungicides for control of crown rot of strawberry caused by Colletotrichum gloeosporioides. Plant Dis. 93: 815-820. https://doi.org/10.1094/PDIS-93-8-0815
  12. Ministry for Food, Agriculture, Forestry and Fisheries. 2011. 2010 production amount and index of agriculture and forestry. http://www.maf.go.kr.
  13. Mondal, S. N., Bhatia, A., Shilts, T. and Timmer, L. W. 2005. Baseline sensitivities of fungal pathogens of fruit and foliage of citrus to azoxystrobin, pyraclostrobin, and fenbuconazole. Plant Dis. 89: 1186-1194. https://doi.org/10.1094/PD-89-1186
  14. Nam, M. H., Jung, S. K., Yoo, S. J., Seo, K. S. and Kim, H. G. 1998. Cultural and pathogenic characteristics between Colletotrichum gleosporioides and Glomerella cingulata isolated from strawberry in Korea. Korean J. Plant Pathol. 14: 654−660. (In Korean)
  15. Nam, M. H., Jung, S. K., Lee, Y. S., Choi, J. M. and Kim, H. G. 2006. Effects of nitrogen, phosphorus, potassium and calcium nutrition on strawberry anthracnose. Plant Pathol. 55: 246-249. https://doi.org/10.1111/j.1365-3059.2006.01322.x
  16. Nam, M. H., Nam, Y. G., Kim, T. I., Kim, H. S., Jang, W. S., Lee, W. K., Lee, I. H., Kang, H. K., Park, Y. J., Choi, J. M. and Whang, K. S. 2009. Compendium of strawberry diseases and pests. Chungnam Strawberry Association. 204 pp.
  17. Park, S. W., Kim, J. T., Kim, J. J. and Kim, H. T. 2002. Sensitivity of Colletotrichum spp. isolated from red-pepper to sterol biosynthesis inhibiting-fungicides and their field fitness. Res. Plant Dis. 8: 239-244. https://doi.org/10.5423/RPD.2002.8.4.239
  18. Peres, N. A. R., Souza, N. L., Peever, T. L. and Timmer, L. W. 2004. Benomyl sensitivity of isolates of Colletotrichum acutatum and C. gloeosporioides from citrus. Plant Dis. 88: 125-130. https://doi.org/10.1094/PDIS.2004.88.2.125
  19. Peres, N. A., Seijo, R. E. and Turechek. W. W. 2010. Pre- and post-inoculation activity of a protectant and a systemic fungicide for control of anthracnose fruit rot of strawberry under different wetness durations. Crop Prot. 29: 1105-1110. https://doi.org/10.1016/j.cropro.2010.05.010
  20. Talhinhas, P., Sreenivasaprasad, S., Neves-Martins, J. and Oliveira, H. 2005. Molecular and phenotypic analyses reveal association of diverse Colletotrichum acutatum groups and a low level of C. gloeosporioides with olive anthracnose. Appl. Environ. Microbiol. 71: 2987-2998. https://doi.org/10.1128/AEM.71.6.2987-2998.2005
  21. Thomas, G. J., Sweetingham, M. W. and Adcock. K. G. 2008. Application of fungicides to reduce yield loss in anthracnoseinfected lupins. Crop Prot. 27: 1071-1077. https://doi.org/10.1016/j.cropro.2007.12.012
  22. Turechek, W. W., Peres, N. A. and Werner, N. A. 2006. Pre- and post-infection activity of pyraclostrobin for control of anthracnose fruit rot of strawberry caused by Colletotrichum acutatum. Plant Dis. 90: 862-868. https://doi.org/10.1094/PD-90-0862

Cited by

  1. Physicochemical Characteristics and Antioxidant Activities of Organic Strawberries vol.30, pp.6, 2015, https://doi.org/10.7318/KJFC/2015.30.6.773
  2. Comparison of Environmental-Friendly and Chemical Spray Calendar for Controlling Diseases and Insect Pests of Strawberry during Nursery Seasons vol.21, pp.4, 2015, https://doi.org/10.5423/RPD.2015.21.4.273
  3. Dipping Strawberry Plants in Fungicides before Planting to Control Anthracnose vol.20, pp.1, 2014, https://doi.org/10.5423/RPD.2014.20.1.054
  4. Growth and Rooting Rate of ‘Maehyang’ Strawberry as Affected by Irrigation Method on Cutting Propagation in Summer Season vol.27, pp.2, 2018, https://doi.org/10.12791/KSBEC.2018.27.2.103