DOI QR코드

DOI QR Code

Disease Responses of Tomato Pure Lines Against Ralstonia solanacearum Strains from Korea and Susceptibility at High Temperature

한국에서 분리한 Ralstonia solanacearum에 대한 순계 토마토의 병 반응과 고온에서의 발병

  • Lee, Hyoung-Ju (Department of Applied Biology, Dong-A University) ;
  • Jo, Eun-Jeong (Department of Medical Bioscience, Dong-A University) ;
  • Kim, Nam-Hee (Department of Applied Biology, Dong-A University) ;
  • Chae, Young (Technology Services Division, National Institute of Horticulture and Herbal Science) ;
  • Lee, Seon-Woo (Department of Medical Bioscience, Dong-A University)
  • 이형주 (동아대학교 응용생물공학과) ;
  • 조은정 (동아대학교 의생명과학과) ;
  • 김남희 (동아대학교 응용생물공학과) ;
  • 채영 (국립원예특작과학원 기술지원과) ;
  • 이선우 (동아대학교 의생명과학과)
  • Received : 2011.09.20
  • Accepted : 2011.12.01
  • Published : 2011.12.31

Abstract

This study evaluated disease resistance responses of pure lines of tomato plants at various temperature conditions against Ralstonia solanacearum strains isolated from Korea. Evaluation of six tomato lines with various strains of R. solanacearum showed that many strains can infect the resistant lines of tomato plants previously known as highly tolerant to bacterial wilt. One of the most virulent strains, SL341 (race 1 and biovar 4) caused severe infection on all six tomato lines, irrespective of temperature. In contrast, a moderately virulent strain SL1944 (race 1, biovar 4) showed the remarkable difference in disease progress on some resistant lines dependent on temperature. Moneymaker and Bonny Best were susceptible to SL1944 at all tested conditions with different temperature. However, tomato lines, such as Hawaii 7998, Hawaii 7996, Bblocking which were previously known as highly tolerant lines, were severely infected by SL1944 at relatively higher temperature ($35^{\circ}C$ for 14 hr light and $28^{\circ}C$ for 10 hr dark cycle). The disease progress at high temperature was much faster than those at low temprature on the same tomato line and those on Moneymaker and Bonny Best at the same high temprature. This result suggested that R. solanacearum strains isolated in Korea were highly virulent to bacterial wilt resistant tomato lines and some strains may cause severe infection on those plants at higher temperature.

Ralstonia solanacearum에 의해 발생하는 토마토 풋마름병에 대하여 저항성으로 알려진 토마토 순계 품종의 국내 병원균에 대한 저항성 반응을 온도별로 평가하였다. 한국에서 분리된 R. solanacearum 균주로 토마토 순계 6 품종의 저항성을 평가한 결과 기존에 저항성으로 알려진 토마토 순계들이 한국 분리균주에 대하여는 대부분 저항성을 유지하지 못하였다. 병원성이 강한 균주인 SL341 (race 1, biovar 4) 균주는 검정한 대부분의 품종에서 온도에 관계없이 강한 병원성을 보였다. 반면, 담배에서 분리된 균주인 SL1944(race 1, biovar 4)은 온도에 따라 발병진전이 현저하게 차이가 났다. Moneymaker와 Bonny Best와 같은 품종은 온도에 관계없이 SL1944에 대하여 감수성이었다. 그러나, 풋마름병 저항성 품종으로 알려진 Hawaii 7998, Hawaii 7996, B-blocking 품종은 오히려 상대적으로 고온인 조건($35^{\circ}C$에서 14시간 명조건과 $28^{\circ}C$에서 10시간 암조건)에서 급격히 발병하였다. 병 진전은 동일한 품종의 낮은 온도에서 병 진전이나 Moneymaker나 Bonny Best 같은 품종에서 동일한 고온 조건의 발병에 비해 눈에 띄게 빨랐다. 본 연구결과는 국내에서 분리된 균주들이 기존에 저항성 토마토 품종을 가해할 수 있으며 고온조건에서는 품종의 저항성 붕괴의 가능성으로 급격한 풋마름병이 유발될 수 있음을 제시한다.

Keywords

References

  1. Agrama, H. A. and Scott, J. W. 2006. Quantitative trait loci for tomato yellow leaf curl virus and tomato mottle virus resistance in tomato. J. Am. Soc. Hort. Sci. 131: 267-272.
  2. Balatero, C. H., Hautea, D. M., Narciso, J. O. and Hanson, P. M. 2005. QTL mapping for bacterial wilt resistance in Hawaii 7996 using AFLP, RGA, and SSR markers. In : Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex, ed. by C. Allen, P. Prior and A. C. Hayward, pp. 301-307. APS press, St. Paul, USA.
  3. Dannon, E., and Wydra, K.. 2004. Interaction between silicon amendment, bacterial wilt development and phenotype of Ralstonia solanacearum in tomato genotypes. Physiol. Mol. Plant Pathol. 64: 233-243. https://doi.org/10.1016/j.pmpp.2004.09.006
  4. Denesh, D., Aarons, S., McGill, G. E. and Young, N. D. 1994. Genetic dissection of oligogenic resistance to bacterial wilt in tomato. Mol. Plant-Microbe Interact. 7: 464-471. https://doi.org/10.1094/MPMI-7-0464
  5. Graham, T., Sequeira, L. and Huang, T. 1977. Bacterial lipopolysaccharides as inducers of disease resistance in tobacco. Appl. Environ. Microbiol. 34: 424-432.
  6. Grimault, V., Gelie, B., Lamattre, M., Prior, P. and Schimidt, J. 1994. Comparative histology of resistant and susceptible tomato cultivars infected by Pseudomonas solanacearum. Physiol. Mol. Pathol. 44: 105-123 https://doi.org/10.1016/S0885-5765(05)80105-5
  7. Grimault, V., Prior, P. and Anais, G.. 2008. A monogenic dominant resistance of tomato to bacterial wilt in Hawaii 7996 is associated with plant colonization by Pseudomonas solanacearum. J. Phytopathol. 143: 349-352. https://doi.org/10.1111/j.1439-0434.1995.tb00274.x
  8. Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Ann. Rev. Phytopathol. 29: 65-87. https://doi.org/10.1146/annurev.py.29.090191.000433
  9. Hayward, A. C. 1994. Systematics and phylogeny of Pseudomonas solanacearum and related bacteria. In: Bacterial wilt: the disease and its causative agent Pseudomonas solanacearum. ed. By A. C. Hayward and G. L. Hartman, pp. 127-135. CAB International, Oxford, UK.
  10. Jeong, Y., Cheong, H., Choi, O., Kim, J., K., Kang, Y., Kim, J., Lee, S., Koh, S., Moon, J. S. and Hwang, I. 2011. An HrpBdependent but type III-independent extracellular aspartic protease is a virulence factor of Ralstonia solanacearum. Mol. Plant Pathol. 12: 373-380. https://doi.org/10.1111/j.1364-3703.2010.00679.x
  11. Jeong, Y., Kim, J., Kang, Y., Lee, S. and Hwang, I. 2007. Genetic diversity and distribution of Korean isolates of Ralstonia solanacearum. Plant Dis. 91: 1277-1287. https://doi.org/10.1094/PDIS-91-10-1277
  12. Kelman, A. 1954. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44: 693-695.
  13. Lopes, C. A., Carvalho, S. I. C. and Boiteux, L. S. 2005. Search for resistance to bacterial wilt in a Brazilian Capsicum germplasm collection. In : Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex, ed. by C. Allen, P. Prior and A. C. Hayward, pp. 247-251. APS press, St. Paul, USA.
  14. Marco, Y., Trigalet, A., Vasse, J., Oliver, J., Feng, D. X. and Deslandes, L. 2005. Host resistance to Ralstonia solanacearum. In : Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex, ed. by C. Allen, P. Prior and A. C. Hayward, pp. 275-283. APS press, St. Paul, USA.
  15. Min, J. S., Park, J. H., Han, K. S, Kim, D. H, Lee, J. S and Kim, H. H. 2009. Screening of tmato cultivars resistant to bacterial wilts. Res. Plant Dis. 15: 198-201. https://doi.org/10.5423/RPD.2009.15.3.198
  16. Nonomurai, T., Matsuda, Y., Tsuda,, M., Uranaka, K. and Toyoda, H. 2001. Susceptibility of commercial tomato cultivars to bacterial wilt in hydroponic system. Gen. Plant Pathol. 67: 224-227. https://doi.org/10.1007/PL00013016
  17. Park, E. J., Lee, S. D., Chung, E. J., Lee, M. H., Um, H. Y., Murugaiyan, S., Moon, B. J. and Lee, S-W. 2007. MicroTom- A model plant system to study bacterial wilt by Ralstonia solanacearum. Plant Pathology J. 23: 239-244. https://doi.org/10.5423/PPJ.2007.23.4.239
  18. Pflieger, S., Lefebvre, V., Caranta, C., Blattes, A., Goffinet, B., and Palloix A. 1999. Disease resistance gene analogs as candidates for QTLs involved in pepper-pathogen interactions. Genome 42: 1100-1110. https://doi.org/10.1139/g99-067
  19. Roberts, P. D., Denny, T. P. and Schell, M. A. 1988. Cloning of the egl genes of Pseudomonas solanacearum and analysis of its role in phytopathogenicity. J. Bacteriol. 170: 1445-1451.
  20. Saile, E., McGarvey, J. A., Schell, M. A. and Denny, T. P. 1997. Role of extracellular polysaccharide and endoglucanase in root invasion and colonization of tomato plants by Ralstonia solanacearum. Phytopathology 87: 1264-1271. https://doi.org/10.1094/PHYTO.1997.87.12.1264
  21. Sakata, Y., Kubo, N., Morishita, M., Kitadani, E., Sugiyama, M., and Hirai, M. 2006. QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L.). Theor Appl Genet 112: 243-250. https://doi.org/10.1007/s00122-005-0121-1
  22. Schaad, N. W., Jones, J. B. and Chun, W. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria, 3rd ed. APS Press, St. Paul, USA.
  23. Schell, M. A. 2000. Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Ann. Rev. Phytopathol. 38: 263-292. https://doi.org/10.1146/annurev.phyto.38.1.263
  24. Takabatake, R., Seo, S., Mitsuhara, I., Tsuda, S. and Ohashi, Y. 2006. Accumulation of the two transcripts of the N gene, conferring resistance to Tobacco Mosaic Virus, is probably important for N gene-dependent hypersensitive cell death. Plant Cell Physiol. 47: 254-261. https://doi.org/10.1093/pcp/pci243
  25. Thoquet, P., Oliver, J., Sperisen, C., Rogowsky, P., Laterrot, H. and Grimsley, N. 1996. Quantitative trait loci determining resistance to bacterial wilt in tomato cultivar Hawaii 7996. Mol. Plant-Microbe Interact. 9: 826-836. https://doi.org/10.1094/MPMI-9-0826
  26. Vasse, J., Frey, P. and Trigalet, A. 1995. Microscopic studies of intercellular infection and protoxylem invasions of tomato roots by Pseudomonas solanacearum. Mol. Plant-Microbe Interact. 8: 241-251. https://doi.org/10.1094/MPMI-8-0241
  27. Wallis, F. M. and Truter, S. J. 1978. Histopathology of tomato plants infected with Pseudomonas solanacearum, with emphasis on ultrastructure. Physiol. Plant Pathol. 13: 307-317. https://doi.org/10.1016/0048-4059(78)90047-4
  28. Wang, J. F., Hanson, P. and Barnes, J. A. 1998. World wide evolution of an international set of resistance source to bacterial wilt in tomato. In: Bacterial Wilt Disease: Molecular and Ecological Aspects. ed. by P. Prior, C. Allen and J. Elphinstone, pp 269-275. INRA Springer.
  29. Yao, J. and Allen, C. 2006. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. J. Bacteriol. 188:3697-3708. https://doi.org/10.1128/JB.188.10.3697-3708.2006

Cited by

  1. Reduction of Bacterial Wilt Diseases with Eggplant Rootstock EG203-Grafted Tomatoes in the Field Trials vol.19, pp.2, 2013, https://doi.org/10.5423/RPD.2013.19.2.108
  2. Antibacterial activity of tannins isolated from Sapium baccatum extract and use for control of tomato bacterial wilt vol.12, pp.7, 2017, https://doi.org/10.1371/journal.pone.0181499
  3. Resistance Evaluation of Tomato Germplasm against Bacterial Wilt by Ralstonia solanacearum vol.20, pp.4, 2014, https://doi.org/10.5423/RPD.2014.20.4.253
  4. Evaluation of Germplasm and Development of SSR Markers for Marker-assisted Backcross in Tomato vol.30, pp.5, 2012, https://doi.org/10.7235/hort.2012.12032
  5. Effect of Spent Mushroom Substrates of Hericium erinaceum on Plant Pathogens of Tomato vol.43, pp.3, 2015, https://doi.org/10.4489/KJM.2015.43.3.185
  6. Antimicrobial Activities of Novel Mannosyl Lipids Isolated from the Biocontrol FungusSimplicillium lamellicolaBCP against Phytopathogenic Bacteria vol.62, pp.15, 2014, https://doi.org/10.1021/jf500361e
  7. Development of an Efficient Screening System for Resistance of Tomato Cultivars to Ralstonia solanacearum vol.21, pp.4, 2015, https://doi.org/10.5423/RPD.2015.21.4.290
  8. Effect of Gallotannins Derived fromSedum takesimenseon Tomato Bacterial Wilt vol.97, pp.12, 2013, https://doi.org/10.1094/PDIS-04-13-0350-RE
  9. Identification of a molecular marker tightly linked to bacterial wilt resistance in tomato by genome-wide SNP analysis vol.131, pp.5, 2018, https://doi.org/10.1007/s00122-018-3054-1