DOI QR코드

DOI QR Code

Differential Effects of Cysteine and Histidine-Capped ZnS:Mn Nanocrystals on Escherichia coli and Human Cells

  • Received : 2010.08.16
  • Accepted : 2010.10.21
  • Published : 2011.01.20

Abstract

Cysteine and histidine-capped water-dispersible ZnS:Mn nanocrystals (ZnS:Mn-Cys and ZnS:Mn-His) were synthesized and their effects on E. coli and human cells were investigated. Particle sizes of these nanocrystals were found from HR-TEM images to be 3.5 nm and 4.0 nm, respectively. Their solution photoluminescence spectra showed identical broad emission peaks at 580 nm. ZnS:Mn-His significantly suppressed the growth of E. coli at $100{\mu}g/mL$ and 1 mg/mL concentrations, something not observed with ZnS:Mn-Cys. Consistent with this, greater inhibition of cell proliferation and viability were observed in HEK293 and IMR90 cells in ZnS:Mn-His at $100{\mu}g/mL$ and 1 mg/mL concentrations.

Keywords

References

  1. Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226. https://doi.org/10.1021/jp9535506
  2. Weller, H. Angew. Chem. Int. Ed. Engl. 1993, 35, 1079
  3. Milliron, D. J.; Alivisatos, A. P.; Pitois, C.; Edder, C.; Frechet, J. M. J. Adv. Mater. 2003, 15, 58. https://doi.org/10.1002/adma.200390011
  4. Brus, L. E. Appl. Phys. A 1991, 53, 465. https://doi.org/10.1007/BF00331535
  5. Hwang, J. M.; Oh, M. O.; Kim, I.; Lee, J. K.; Ha, C. S. Curr. Appl. Phys. 2005, 5, 31. https://doi.org/10.1016/j.cap.2003.11.075
  6. Yu, S. H.; Wu, Y. S.; Yang, J.; Han, Z.; Xie, Y.; Qian, Y.; Liu, X. Chem. Mater. 1998, 10, 2309. https://doi.org/10.1021/cm980181s
  7. Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. Phys. Chem. B 2001, 105, 8861. https://doi.org/10.1021/jp0105488
  8. Jun, Y. W.; Jang, J. T.; Cheon, J. Bull. Korean Chem. Soc. 2006, 27, 961. https://doi.org/10.5012/bkcs.2006.27.7.961
  9. Park, C.; Kim, D. H.; Kim, M. J.; Yoon, T. H. Bull. Korean Chem. Soc. 2008, 29, 303. https://doi.org/10.5012/bkcs.2008.29.2.303
  10. Dua, P.; Jeong, S.; Lee, S. E.; Hong, S. W.; Kim, S.; Lee, D. K. Bull. Korean Chem. Soc. 2010, 31, 1555. https://doi.org/10.5012/bkcs.2010.31.6.1555
  11. Kho, R.; Nguyen, L.; Torres-Martínez, C. L.; Mehra, R. K. Biochem. Biophys. Res. Commun. 2000, 272, 29. https://doi.org/10.1006/bbrc.2000.2712
  12. Mitchell, G. P.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1999, 121, 8122. https://doi.org/10.1021/ja991662v
  13. Chen, C. C.; Yet, C. P.; Wang, H. N.; Chao, C. Y. Langmuir 1999, 15, 6845. https://doi.org/10.1021/la990165p
  14. Bae, W.; Mehra, R. K. J. Inorg. Biochem. 1998, 70, 125. https://doi.org/10.1016/S0162-0134(98)10008-9
  15. Bhargava, R. N.; Gallagher, D. Phys. Rev. Lett. 1994, 72, 416. https://doi.org/10.1103/PhysRevLett.72.416
  16. Lee, J. H.; Kim, Y. A.; Kim, K.; Huh, Y. D.; Hyun, J. W.; Kim, H. S.; Noh, S. J.; Hwang, C. S. Bull. Korean Chem. Soc. 2007, 28, 1091. https://doi.org/10.5012/bkcs.2007.28.7.1091
  17. Lee, J. H.; Kim, Y. A.; .Kim, K.; Huh, Y. D.; Hyun, J. W.; Kim, H. S.; Noh, S. J.; Hwang, C. S. Bull. Korean Chem. Soc. 2007, 28, 1091. https://doi.org/10.5012/bkcs.2007.28.7.1091
  18. Yi, G.; Sun, B.; Yang, F.; Chen, D. J. Mater. Chem. 2001, 11, 2928. https://doi.org/10.1039/b108394e
  19. Bhargava, R. N.; Gallagher, D.; Hong, X.; Nurmikko, A. Phys. Rev. Lett. 1994, 72, 416. https://doi.org/10.1103/PhysRevLett.72.416
  20. Williams, A. T. R.; Winfield, S. A.; Miller, J. N. Analyst 1983, 108, 1067. https://doi.org/10.1039/an9830801067
  21. Zhuang, J.; Zhang, X.; Wang, G.; Li, D.; Yang, W.; Li, T. J. Mater. Chem. 2003, 13, 1853. https://doi.org/10.1039/b303287f
  22. Moszczenski, C. W.; Hooper, R. J. Inorg. Chim. Acta 1983, 70, 71. https://doi.org/10.1016/S0020-1693(00)82780-2
  23. Bulaz, G.; Kortemme, T.; Goldenberg, D. P. Biochem. 1998, 37, 8965. https://doi.org/10.1021/bi973101r
  24. Baker, D. H.; Czarnecki-Maulden, G. L. J. Nutr. 1987, 117, 1003. https://doi.org/10.1093/jn/117.6.1003
  25. Wang, L.; Sun, N.; Terzyan, S.; Zhang, X.; Benson, D. R. Biochem. 2006, 45, 13750. https://doi.org/10.1021/bi0615689
  26. Jorgensen, K. C. Inorg. Chem. 1964, 3, 1201. https://doi.org/10.1021/ic50018a036
  27. Hwang, C. S.; Lee, N.; Kim, Y. A.; Park, Y. B. Bull. Korean Chem. Soc. 2006, 27, 1809. https://doi.org/10.5012/bkcs.2006.27.11.1809

Cited by

  1. bacteria vol.28, pp.4, 2013, https://doi.org/10.1002/bio.2477
  2. Syntheses of Biologically Non-Toxic ZnS:Mn Nanocrystals by Surface Capping with O-(2-aminoethyl)polyethylene Glycol and O-(2-carboxyethyl)polyethylene Glycol Molecules vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1181
  3. Doped quantum dots for chemo/biosensing and bioimaging vol.42, pp.12, 2013, https://doi.org/10.1039/c3cs60017c
  4. One-Step Thermolysis Synthesis of Divalent Transition Metal Ions Monodoped and Tridoped CdS and ZnS Luminescent Nanomaterials vol.2014, pp.1687-4129, 2014, https://doi.org/10.1155/2014/873036
  5. Biocompatible ZnS:Mn quantum dots for reactive oxygen generation and detection in aqueous media vol.17, pp.12, 2015, https://doi.org/10.1007/s11051-015-3269-x
  6. Emerging Frontiers of Graphene in Biomedicine vol.25, pp.2, 2011, https://doi.org/10.4014/jmb.1412.12045
  7. Variable Sensing Ion Selectivity of the L ‐Cysteine Capped ZNS :Mn Nanocrystals in Aqueous Solution vol.41, pp.8, 2011, https://doi.org/10.1002/bkcs.12079
  8. Highly luminescent ZnS:Mn quantum dots capped with aloe vera extract vol.323, pp.None, 2011, https://doi.org/10.1016/j.ssc.2020.114106