DOI QR코드

DOI QR Code

Properties and Rapid Consolidation of Nanostructured NiTi by Pulsed Current Activated Sintering

  • Kim, Won-Baek (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources) ;
  • Kim, Na-Ri (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Ko, In-Yong (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Cho, Sung-Wook (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources) ;
  • Park, Je-Shin (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University)
  • Published : 2011.04.20

Abstract

Highly dense nanostructured TiNi with a relative density of up to 99 % was obtained within two minutes by pulsed current activated sintering under a pressure of 80 MPa. The advantage of this process is that it allows very quick densification to near theoretical density and prohibits grain growth in nano-structured materials. The microstructural and mechanical properties of the dense TiNi produced by PCAS were investigated.

Keywords

References

  1. K. Otsuka and X. Ren, Prog. Mater. Sci. 50, 511 (2005). https://doi.org/10.1016/j.pmatsci.2004.10.001
  2. D. K. Kennedy, F. K. Straub, L. Mc D. Schetky, Z. Chaudhry, R. Roznoy, J. Intel. Mat. Syst. Str. 15, 235 (2004). https://doi.org/10.1177/1045389X04042794
  3. S. Saadat, J. Salichs, M. Noori, Z. Hou, H. Davoodi, I. Baron, Y. Suzuki, and A. Masuda, Smart Mater. Struct. 11, 218 (2002). https://doi.org/10.1088/0964-1726/11/2/305
  4. T. Duerig, A. Pelton, and D. Stockel, Mater. Sci. Eng. A273-275, 149 (1999).
  5. H. Gleiter, Nanostruct. Mater. 6, 3 (1995). https://doi.org/10.1016/0965-9773(95)00025-9
  6. J. Karch, R. Birringer, and H. Gleiter, Nature 330, 556 (1987). https://doi.org/10.1038/330556a0
  7. A. M. George, J. Iniguez, and L. Bellaiche, Nature 413, 54 (2001). https://doi.org/10.1038/35092530
  8. D. Hreniak and W. Strek, J. Alloy. Compd. 341, 183 (2002). https://doi.org/10.1016/S0925-8388(02)00067-1
  9. C. Xu, J. Tamaki, N. Miura, and N. Yamazo, Sensor. Actuat. B 32, 147 (1991).
  10. D. G. Lamas, A. Caneiro, D. Niebieskikwiat, R. D. Sanchez, D. Garcia, and B. Alascio, J. Magn. Magn. Mater. 241, 207 (2002). https://doi.org/10.1016/S0304-8853(02)00006-9
  11. E. S. Ahn, N. J. Gleason, A. Nakahira, and J. Y. Ying, Nano Lett. 1, 149 (2001). https://doi.org/10.1021/nl0055299
  12. Z. Fang and J. W. Eason, Int. J. Refract. Met. H. Mater. 13, 297 (1995). https://doi.org/10.1016/0263-4368(95)92675-A
  13. I. J. Shon, D. K. Kim, K. T. Lee, and K. S. Nam, Met. Mater. Int. 14, 593 (2008). https://doi.org/10.3365/met.mat.2008.10.593
  14. M. Sommer, W. D. Schubert, E. Zobetz, and P. Warbichler,Int. J. Refract. Met. H. Mater. 20, 41 (2002). https://doi.org/10.1016/S0263-4368(01)00069-5
  15. D. M. Lee, K. M. Jo, and I. J. Shon, J. Kor. Inst. Met. & Mater. 47, 344 (2009).
  16. H. C. Kim, D. Y. Oh, J. Guojian, and I. J. Shon, Mater. Sci. Eng. A 368, 10 (2004). https://doi.org/10.1016/j.msea.2003.08.105
  17. H. C. Kim, D. Y. Oh, and I. J. Shon, Int. J. Refract. Met. H. Mater. 22, 197 (2004). https://doi.org/10.1016/j.ijrmhm.2004.06.006
  18. D. Y. Oh, H. C. Kim, J. K. Yoon, I. J. Shon, J. Alloy. Compd. 386, (2005).
  19. I. J. Shon, S. C. Kim, B. S. Lee, and B. R. Kim, Electron. Mater. Lett. 5, 19 (2009). https://doi.org/10.3365/eml.2009.03.019
  20. C. Suryanarayana and M. Grant Norton, X-ray Diffraction a Practical Approach, Plenum Press, New York (1998).
  21. G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
  22. D. Y. Li, Wear 221, 116 (1988).
  23. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  24. J. E. Garay, U. Anselmi-tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-kumar, Appl. Phys. Lett. 85, 573 (2004). https://doi.org/10.1063/1.1774268
  25. J. R. Friedman, J. E. Garay, U. Anselmi-tamburini, and Z. A. Munir, Intermetallics 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  26. J. E. Garay, U. Anselmi-tamburini, and Z. A. Munir, Acta mater. 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2