DOI QR코드

DOI QR Code

Use of Spectral-Domain Optical Coherence Tomography to Analyze Macular Thickness According to Refractive Error

스펙트럼 영역 빛간섭단층촬영기를 이용한 근시 정도에 따른 황반 구조의 정량적 분석

  • Kim, Seung-Hoon (Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine) ;
  • Park, Joo-Youn (Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine) ;
  • Park, Tae-Kwann (Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine) ;
  • Ohn, Young-Hoon (Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine)
  • 김승훈 (순천향대학교 의과대학 부천병원 안과학교실) ;
  • 박주연 (순천향대학교 의과대학 부천병원 안과학교실) ;
  • 박태관 (순천향대학교 의과대학 부천병원 안과학교실) ;
  • 온영훈 (순천향대학교 의과대학 부천병원 안과학교실)
  • Published : 2011.11.15

Abstract

Purpose: To investigate the correlation of macular retinal thickness and refractive error using spectral-domain optical coherence tomography (SD-OCT). Methods: A total of 120 eyes with no posterior abnormalities were enrolled in the present study. Subjects were divided into 3 groups based on their spherical equivalent. Visual acuity, refraction, slit lamp examination, tonometry and fundus examination were performed. Retinal thickness between the RPE and IS/OS junction was measured at the fovea, 1 mm (inner ring) and 2 mm (outer ring) superiorly, inferiorly, nasally and temporally using SD-OCT. Overall average thickness, average foveal thickness, and the inner and outer ring macular thickness were measured. Results: The average foveal thickness was significantly greater in the high myopic eyes than in the low to moderate myopic and emmetropic eyes (p = 0.001). However, the RPE-IS/OS junction thickness of the foveola and the outer macular thickness were significantly lower (p = 0.001, p = 0.002) in the high myopic eyes. There was a weak, but significant negative correlation between refractive error and average foveal thickness (r = -0.38, p = 0.001). A positive correlation was found between refractive error and the RPE-IS/OS junction thickness (r = 0.40, p = 0.001). Conclusions: Macular retinal thickness is related to refractive error in normal subjects. Effects of eyeball elongation are more apparent in high myopic eyes than in low to moderate myopic eyes. A significant decline in the RPE-IS/OS junction thickness suggests the photoreceptor outer segments in the foveola are damaged in high myopic eyes.

목적: 근시 정도에 따른 황반 두께를 스펙트럼 영역 빛간섭단층촬영기(SD-OCT)를 이용하여 분석하였다. 대상과 방법: 120명 120안을 구면렌즈대응치에 따라 세 군으로 나누고 SD-OCT로 망막색소상피층(RPE)과 광수용체층(photoreceptor layer)의 내분절과 외분절의 접합부(IS/OS junction) 사이의 두께를 중심오목과 주변부에서 측정하였다. 또한 평균황반두께, ETDRS subfield 9개 영역 황반 두께를 비교하였다. 결과: 고도 근시안에서 중심 원의 황반 두께는 정시안과 중등도 근시안보다 매우 두꺼웠으며(p=0.001), 중심오목의 RPE와 IS/OS junction 사이의 두께 및 바깥쪽 원의 황반두께는 유의하게 얇았다(p=0.001, p=0.002). 구면렌즈대응치와 중심원의 황반 두께는 음의 상관관계를 보였으며, 중심오목의 RPE-IS/OS junction 사이의 두께와는 양의 상관관계를 보였다(r=-0.38, p=0.001; r=0.40, p=0.001). 결론: 굴절 상태와 황반 두께는 유의한 연관성이 있다. 특히 고도 근시안에서 안구 신장에 따른 효과가 뚜렷하게 나타나며 중심오목에서 광수용체층 외분절의 두께 감소가 나타난다.

Keywords

References

  1. Katz J, Tielsch JM, Sommer A. Prevalence and risk factors for refractive errors in an adult inner city population. Invest Ophthalmol Vis Sci 1997;38:334-40.
  2. Wang Q, Klein BE, Klein R, Moss SE. Refractive status in the Beaver Dam Eye Study. Invest Ophthalmol Vis Sci 1994;35:4344-7.
  3. Wong TY, Foster PJ, Hee J, et al. Prevalence and risk factors for refractive errors in adult Chinese in Singapore. Invest Ophthalmol Vis Sci 2000;41:2486-94.
  4. Kang SH, Kim PS, Choi DG. Prevalence of myopia in 19-year-old Korean males: The relationship between the prevalence and education or urbanization. J Korean Ophthalmol Soc 2004;45:2082-7.
  5. Apple DJ, Fabb MF. Clinicopathologic Correlation of Ocular Disease: a Text and Stereoscopic Atlas. St. Louis: CV Mosby, 1978;39-44.
  6. Yanoff M, Fine BS. Ocular Pathology: A Text and Atlas. Philadelphia: Harper & Row, 1982;513-4.
  7. Lim MC, Hoh ST, Foster PJ, et al. Use of optical coherence tomography to assess variations in macular retinal thickness in myopia. Invest Ophthalmol Vis Sci 2005;46:974-8. https://doi.org/10.1167/iovs.04-0828
  8. Gobel W, Hartmann F, Haigis W. Determination of retinal thickness in relation to the age and axial length using optical coherence tomography. Ophthalmologe 2001;98:157-62. https://doi.org/10.1007/s003470170177
  9. Wakitani Y, Sasoh M, Sugimoto M, et al. Macular thickness measurements in healthy subjects with different axial lengths using optical coherence tomography. Retina 2003;23:177-82. https://doi.org/10.1097/00006982-200304000-00007
  10. Zou H, Zhang X, Xu X, Yu S. Quantitative in vivo retinal thickness measurement in Chinese healthy subjects with retinal thickness analyzer. Invest Ophthalmol Vis Sci 2006;47:341-7. https://doi.org/10.1167/iovs.05-0480
  11. Chan CM, Yu JH, Chen LJ, et al. Posterior pole retinal thickness measurements by the retinal thickness analyzer in healthy Chinese subjects. Retina 2006;26:176-81. https://doi.org/10.1097/00006982-200602000-00009
  12. Lim MC, Hoh ST, Foster PJ, et al. Use of optical coherence tomography to assess variations in macular retinal thickness in myopia. Invest Ophthalmol Vis Sci 2005;46:974-8. https://doi.org/10.1167/iovs.04-0828
  13. Lam DS, Leung KS, Mohamed S, et al. Regional variations in the relationship between macular thickness measurements and myopia. Invest Ophthalmol Vis Sci 2007;48:376-82. https://doi.org/10.1167/iovs.06-0426
  14. Wu PC, Chen YJ, Chen CH, et al. Assessment of macular retinal thickness and volume in normal eyes and highly myopic eyes with third-generation optical coherence tomography. Eye 2008;22:551-5. https://doi.org/10.1038/sj.eye.6702789
  15. Sayanagi K, Ikuno Y, Soga K, Tano Y. Photoreceptor inner and outer segment defects in myopic foveoschisis. Am J Ophthalmol 2008;145:902-8. https://doi.org/10.1016/j.ajo.2008.01.011
  16. Kleinstein RN, Jones LA, Hullett S, et al. Refractive error and ethnicity in children. Arch Ophthalmol 2003;121:1141-7. https://doi.org/10.1001/archopht.121.8.1141
  17. Lin LL, Shih YF, Hsiao CK, et al. Epidemiologic study of the prevalence and severity of myopia among schoolchildren in Taiwan in 2000. J Formos Med Assoc 2001;100:684-91.
  18. Ho J, Castro DP, Castro LC, et al. Clinical assessment of mirror artifacts in spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2010;51:3714-20. https://doi.org/10.1167/iovs.09-4057
  19. Early Treatment Diabetic Retinopathy Study design and baseline patient characteristics. ETDRS Report No. 7. Ophthalmology 1991;98:741-56.
  20. Zejmo M, Forminska-Kapuscik M, Pieczara E, et al. Etiopathogenesis and management of high-degree myopia. Part I. Med Sci Monit 2009;15:199-202.
  21. Kempen JH, Mitchell P, Lee KE, et al. The prevalence of refractive errors among adults in the United States, Western Europe, and Australia. Arch Ophthalmol 2004;122:495-505. https://doi.org/10.1001/archopht.122.4.495
  22. Saw SM, Gazzard G, Shih-Yen EC, Chua WH. Myopia and associated pathological complications. Ophthalmic Physiol Opt 2005; 25:381-91 https://doi.org/10.1111/j.1475-1313.2005.00298.x
  23. Ikuno Y, Tano Y. Retinal and choroidal biometry in highly myopic eyes with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2009;50:3876-80. https://doi.org/10.1167/iovs.08-3325
  24. Ikuno Y, Jo Y, Hamasaki T, Tano Y. Ocular risk factors for choroidal neovascularization in pathologic myopia. Invest Ophthalmol Vis Sci 2010;51:3721-5. https://doi.org/10.1167/iovs.09-3493
  25. Curtin BJ, Karlin DB. Axial length measurements and fundus changes of the myopic eye. Am J Ophthalmol 1971;71:42-53.
  26. Grossniklaus HE, Green WR. Pathologic findings in pathologic myopia. Retina 1992;12:127-33.
  27. Jonas JB, Berenshtein E, Holbach L. Lamina cribrosa thickness and spatial relationships between intraocular space and cerebrospinal fluid space in highly myopic eyes. Invest Ophthalmol Vis Sci 2004;45:2660-5. https://doi.org/10.1167/iovs.03-1363
  28. McDonnell JM. Ocular embryology and anatomy. In: Ogden TE, ed. Retina. Vol. 1. St Louis: CV Mosby, 1989; 5-16.
  29. Choi SW, Lee SJ. Thickness changes in the fovea and peripapillary retinal nerve fiber layer depend on the degree of myopia. Korean J Ophthalmol 2006;20:215-9. https://doi.org/10.3341/kjo.2006.20.4.215
  30. Song WK, Lee SC, Lee ES, et al. Macular Thickness Variations with Sex, Age, and Axial Length in Healthy Subjects: a Spectral Domain-Optical Coherence Tomography Study. Invest Ophthalmol Vis Sci 2010;51:3913-8. https://doi.org/10.1167/iovs.09-4189
  31. Li KY, Tiruveedhula P, Roorda A. Intersubject variability of foveal cone photoreceptor density in relation to eye length. Invest Ophthalmol Vis Sci 2010;51:6858-67. https://doi.org/10.1167/iovs.10-5499
  32. Liang H, Crewther DP, Crewther SG, Barila AM. A role for photoreceptor outer segments in the induction of deprivation myopia. Vision Res 1995;35:1217-25. https://doi.org/10.1016/0042-6989(94)00241-D
  33. Rostgaard J, Qvortrup K. A note about retinal structure and visual acuity. A light microscopic study of the cones in fovea centralis. Acta Ophthalmol Scand 1999;77:45-9. https://doi.org/10.1034/j.1600-0420.1999.770111.x
  34. Kawabata H, Adachi-Usami E. Multifocal electroretinogram in myopia. Invest Ophthalmol Vis Sci 1997;38:2844-51.
  35. Wolsley CJ, Saunders KJ, Silvestri G, Anderson RS. Investigation of changes in the myopic retina using multifocal electroretinograms, optical coherence tomography and peripheral resolution acuity. Vision Res 2008;48:1554-61. https://doi.org/10.1016/j.visres.2008.04.013
  36. Abbott CJ, Grunert U, Pianta MJ, McBrien NA. Retinal thinning in tree shrews with induced high myopia: optical coherence tomography and histological assessment. Vision Res 2011;51:376-85. https://doi.org/10.1016/j.visres.2010.12.005
  37. Teakle EM, Wildsoet CF, Vaney DI. The spatial organization of tyrosine hydroxylase-immunoreactive amacrine cells in the chicken retina and the consequences of myopia. Vision Res 1993;33: 2383-96. https://doi.org/10.1016/0042-6989(93)90117-F
  38. Kanai K, Abe T, Murayama K, Yoneya S. Retinal thickness and changes with age. Nippon Ganka Gakkai Zasshi 2002;106:162-5.
  39. Kang JH, Kim SA, Song UG, Yun HS. Macular thickness changes with age in normal subjects measured by optical coherence tomography. J Korean Ophthalmol Soc 2004;45:592-8.
  40. Kang MS, Kyung SE, Chang MH. Mean macular volume in normal Korean eyes measured by spectral-domain optical coherence tomography. J Korean Ophthalmol Soc 2010;51:1077-83. https://doi.org/10.3341/jkos.2010.51.8.1077
  41. Kelty PJ, Payne JF, Trivedi RH, et al. Macular thickness assessment in healthy eyes based on ethnicity using Stratus OCT optical coherence tomography. Invest Ophthalmol Vis Sci 2008;49:2668-72. https://doi.org/10.1167/iovs.07-1000

Cited by

  1. The Efficacy ofVaccinium Uliginosumfor Early Age-Related Macula Degeneration vol.54, pp.8, 2013, https://doi.org/10.3341/jkos.2013.54.8.1255
  2. Comparison of Diagnostic Power Among OCT Parameters According to Peripapillary Atrophy in High Myopic Glaucoma vol.54, pp.12, 2011, https://doi.org/10.3341/jkos.2013.54.12.1844
  3. A Study of Foveal Shape in Emmetropia and Myopia Using Spectral Domain Optical Coherence Tomography vol.55, pp.6, 2011, https://doi.org/10.3341/jkos.2014.55.6.833
  4. Foveal Shape According to Age and Gender Using Spectral Domain Optical Coherence Tomography vol.55, pp.10, 2011, https://doi.org/10.3341/jkos.2014.55.10.1504
  5. OQAS를 이용한 중심장액성맥락망막병증의 광학적 질 분석 vol.21, pp.3, 2011, https://doi.org/10.14479/jkoos.2016.21.3.281