DOI QR코드

DOI QR Code

Dual‐color FISH karyotype analyses using rDNAs in three Cucurbitaceae species

Waminal, Nomar Espinosa;Kim, Nam-Soo;Kim, Hyun Hee

  • Published : 20111000

Abstract

Dual-color fluorescence in situ hybridization (FISH) analysis of three Cucurbitaceae species from different genera was conducted using 5S and 45S rDNA probes. In Benincasa hispida (Thunb.) Cogn. (2n=24), the 45S rDNA probe hybridized on two chromosomes, one in the short arm of a medium-sized metacentric chromosome and another at the satellite of a chromosome. The 5S rDNA hybridized at a site proximal to the centromere of the same short arm of the 45S rRNA gene locus that occupied almost the entire short arm. For Citrullus lanatus (Thunb.) Matsum & Nakai (2n=22), the 45S rDNA probe hybridized at sites in the short arms of two chromosomes and the 5S rDNA probe was co-localized with the 45S rRNA locus at the region proximal to the centromere in one chromosome. The 45S rRNA loci occupied almost all of the short arms in both chromosomes. In Cucurbita moschata Duch. (2n=40), the 45S rDNA probe hybridized in five chromosomes in which the 45S rRNA genes occupied almost two-thirds of the chromosomes in two large chromosomes and the entire short arm of a medium-sized chromosome. Two other loci were present in two medium-sized chromosomes, one in the proximal region in the short arm of a chromosome and another at the tip of the long arm of a chromosome. Chromosomes of B. hispida were relatively larger than those of the other two species. The karyotype of B. hispida is composed of two metacentrics and 10 submetacentrics, while that of C. lanatus is composed of seven metacentrics and four submetacentrics and that of C. moschata is composed of 18 metacentrics and two submetacentrics. Comparative chromosome evolution among the three Cucurbitaceae species was attempted using the karyotypes and the chromosomal dis- tribution patterns of the 5S and 45S rDNAs. The results presented herein will be useful in elucidating the phylogenetic relationships among Cucurbitaceae species, and will provide basic data for their breeding programs.

Keywords

References

  1. Bhaduri PN and Bose PC (1947) Cyto-genetical investigations in some common cucurbits, with special reference to fragmentation of chromosomes as a physical basis of speciation. J. Genet. 48: 237-256. https://doi.org/10.1007/BF02989384
  2. Chen JF, Staub JE, Adelberg JW and Jiang J (1999) Physical mapping of 45S rRNA genes in Cucumis species by fluorescence in situ hybridization. Can. J. Bot. 77: 389-393.
  3. Chung SM, Staub JE and Chen JF (2006) Molecular phylogeny of Cucumis species as revealed by consensus chloroplast SSR marker length and sequence variation. Genome 49: 219-229. https://doi.org/10.1139/G05-101
  4. Coen ES and Dover GA (1983) Unequal exchanges and the coevolution of X and Y rDNA arrays in Drosophila melanogaster. Cell 33: 849-855. https://doi.org/10.1016/0092-8674(83)90027-2
  5. Csordas A (1990) On the biological role of histone acetylation. Biochem. J. 265: 23-38.
  6. Darlington, CD and Wylie AP (1956) Chromosome atlas of flowering plants. George Allen and Unwin, Ltd, London.
  7. Datson PM and Murray BG (2006) Ribosomal DNA locus evolution in Nemesia: transposition rather than structural rearrangement as the key mechanism? Chromosome Res. 14: 845-857. https://doi.org/10.1007/s10577-006-1092-z
  8. de Jong HJ, Fransz P and Zabel P (1999) High-resolution FISH in plants: techniques and applications. Trends Plant Sci. 4: 258-263. https://doi.org/10.1016/S1360-1385(99)01436-3
  9. de Melo NF and Guerra M (2003) Variability of the 5S and 45S rDNA sites in Passiflora L. species with distinct base chromosome numbers. Ann. Bot. 92: 309-316. https://doi.org/10.1093/aob/mcg138
  10. Dong F, Song J, Naess SK, Helgeson JP, Gebhardt C and Jiang J (2000) Development and applications of a set of chromosome- specific cytogenetic DNA markers in potato. Theor. Appl. Genet. 101: 1001-1007. https://doi.org/10.1007/s001220051573
  11. Dover GA (1986) Molecular drive in multigene families; how biological novelities arise, spread, and assimilated. Trends Genet. 2: 159-165.
  12. Dover GA (1989) Linkage disequilibrium and molecular drive in the rDNA gene family. Genetics 122: 249-252.
  13. Drouin G and Moniz de Sa M (1995) The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. Mol. Biol. Evol. 12: 481-493.
  14. Dubcovsky J and Dvorak J (1995) Ribosomal RNA multigene loci: nomads of the Triticeae genomes. Genetics 140: 1367-1377.
  15. Dutt B and Roy RP (1969) Cytogenetical studies in the interspecific hybrid of Luffa cylindrica L. and L. graveolens Roxb. Genetica 40: 7-18. https://doi.org/10.1007/BF01787335
  16. Dutt B and Roy RP (1971) Cytogenetic investigations in Cucurbitaceae I. Interspecific hybridization in Luffa. Genetica 42: 139-156. https://doi.org/10.1007/BF00154845
  17. Fukui K (2005) Recent development of image analysis methods in plant chromosome research. Cytogenet Genome Res. 109: 83-89. https://doi.org/10.1159/000082386
  18. Ganal M, Riede I and Hemleben V (1986) Organization and sequence analysis of two related satellite DNAs in cucumber (Cucumis sativus L.). J. Mol. Evol. 23: 23-30. https://doi.org/10.1007/BF02100995
  19. Gerlach WL and Bedbrook JR (1979) Cloning and characterization of ribosomal rDNA genes from wheat and barley. Nucleic Acids Res. 7: 1869-1885. https://doi.org/10.1093/nar/7.7.1869
  20. Han YH, Zhang ZH, Liu C, Liu J, Huang SW, Jiang JM and Jin WW (2009) Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation. Proc. Natl. Acad. Sci. 106: 14937-14941. https://doi.org/10.1073/pnas.0904833106
  21. Han YH, Zhang ZH, Liu JH, Lu JY, Huang SW and Jin WW (2008) Distribution of the tandem repeat sequences and karyotyping in cucumber (Cucumis sativus L.) by fluorescence in situ hybridization. Cytogenet. Genome Res. 122: 80-88. https://doi.org/10.1159/000151320
  22. Jeffrey C (2005) A new system of Cucurbitaceae. Bot. Zhurn. 90: 332-335.
  23. Kato A, Lamb JC and Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc. Natl. Acad. Sci. 101: 13554-13559. https://doi.org/10.1073/pnas.0403659101
  24. Kirkpatrick KJ, Decker DS and Wilson HD (1985) Allozyme differentiation in the Cucurbita pepo complex: C. pepo var. medullosa vs. C. texana. Econ. Bot. 39: 289-299. https://doi.org/10.1007/BF02858798
  25. Koo DH, Choi HW, Cho J, Hur Y and Bang JW (2005) A high-resolution karyotype of cucumber (Cucumis sativus L. 'Winter Long') revealed by C-banding, pachytene analysis, and RAPD-aided fluorescence in situ hybridization. Genome 48: 534-540. https://doi.org/10.1139/g04-128
  26. Koo DH, Hur Y, Jin DC and Bang JW (2002) Karyotype analysis of a Korean cucumber cultivar (Cucumis sativus L. cv. Winter Long) using C-banding and bicolor fluorescence in situ hybridization. Mol. Cells 13: 413-418.
  27. Koo DH, Nam YW, Choi D, Bang JW, de Jong H and Hur Y (2010) Molecular cytogenetic mapping of Cucumis sativus and C. melo using highly repetitive DNA sequences. Chromosome Res. 18: 325-336. https://doi.org/10.1007/s10577-010-9116-0
  28. Kubista M, Åkerman B and Nordén B (1987) Characterization of interaction between DNA and 4',6-diamidino-2-phenylindole by optical spectroscopy. Biochemistry 26: 4545-53. https://doi.org/10.1021/bi00388a057
  29. Lamond AL and Earnshaw WC (1998) Structure and function in the nucleus. Science 280: 547-553. https://doi.org/10.1126/science.280.5363.547
  30. Leitch IJ and Heslop-Harrison JS (1993) Physical mapping of sites of 5S rDNA sequences and one site of the $\alpha$-amylase-2 gene in barley (Hordeum vulgare). Genome 36: 517-523. https://doi.org/10.1139/g93-071
  31. Levan A, Fredga K and Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52: 201-220.
  32. Levsky JM and Singer RH (2003) Fluorescence in situ hybridization: past, present and future. J. Cell Sci. 116: 2833-2838. https://doi.org/10.1242/jcs.00633
  33. Li Q, Ma L, Huang J and Li L (2007) Chromosomal Localization of ribosomal DNA sites and karyotype analysis in three species of Cucurbitaceae (abstract only). Journal of Wuhan University, Natural Science ed., (DOI: CNKI:SUN:WHDY.0.2007-04-013)
  34. Lim KB, de Jong H, Yang TJ, Park JY, Kwon SJ, Kim JS, Lim MH, Kim JA, Jin M, Jin YM, et al. (2005) Characterization of rDNAs and tandem repeats in the heterochromatin of Brasicca rapa. Mol. Cells 19: 436-444.
  35. Long EO and Dawid IB (1980) Repeated genes in eukaryotes. Ann. Rev. Biochem. 49: 727-764. https://doi.org/10.1146/annurev.bi.49.070180.003455
  36. Maluszynska J and Heslop-Harrison JS (1991) Localization of tandemly repeated DNA sequences in Arabidopsis thaliana. Plant. J. 1: 159-166. https://doi.org/10.1111/j.1365-313X.1991.00159.x
  37. Martins C and Galetti Jr. PM (1999) Chromosomal localization of 5S rDNA genes in Leporinus fish (Anostomidae, Characiformes). Chromosome Res. 7: 363-367. https://doi.org/10.1023/A:1009216030316
  38. Martins C and Wasko AP (2004) Organization and evolution of 5S ribosomal DNA in the fish genome. In Focus on Genome Research, Williams CR, ed., Nova Science Publishers, Inc. Hauppauge NY, pp. 335-363.
  39. Ng TJ (1993) New opportunities in the Cucurbitaceae. In New Crops, Janick J and Simon JE, eds., Wiley, New York pp. 538-546.
  40. Ohmido N, Fukui K and Kinoshita T (2010) Recent advances in rice genome and chromosome structure research by fluorescence in situ hybridization (FISH). Proc. Jpn. Acad., Ser. B 86: 103-116. https://doi.org/10.2183/pjab.86.103
  41. Ramachandran C and Narayan RKJ (1990) Satellite DNA specific to knob heterochromatin in Cucumis metuliferus (Cucurbitaceae). Genetica 80: 129-138. https://doi.org/10.1007/BF00127133
  42. Raskana O, Belyayev A and Nevo E (2004) Activity of the En/Spm-like transpositions in meiosis as a bases of chromosome repatterning in a small, isolated, peripheral population of Aegilops spelotoides Tausch. Chromosome Res. 12: 153-161.
  43. Ren Y, Zhang ZH, Liu J, Staub JE, Han Y, Cheng Z, Li X, Lu J, Miao H, Kang H, et al. (2009) An integrated genetic and cytogenetic map of the cucumber genome. PLoS ONE 4: e5795. https://doi.org/10.1371/journal.pone.0005795
  44. Robinson RW and Decker-Walters DS (1999) Cucurbits. CAB International, Wallingford, Oxford, UK.
  45. Roussel P, Andre C, Comai L and Hernandez-Verdun D (1996) The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J. Cell. Biol. 133: 235-246. https://doi.org/10.1083/jcb.133.2.235
  46. Roy V, Monti-Dedieu L, Chaminade N, Sijak-Yakovlev S, Aulard S, Lemeunier F and Montchamp-Moreau C (2005) Evolution of the chromosomal location of rDNA genes in two Drosophila species subgroups: ananassae and melanogaster. Heredity 94: 388-395. https://doi.org/10.1038/sj.hdy.6800612
  47. Sadder MT and Weber G (2001) Karyotype of maize (Zea mays L.) mitotic metaphase chromosomes as revealed by fluorescence in situ hybridization (FISH) with cytogenetic DNA markers. Plant Mol. Biol. Rep. 19: 117-123. https://doi.org/10.1007/BF02772153
  48. Schubert I and Wobus U (1985) In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma (Berl) 92: 143-148. https://doi.org/10.1007/BF00328466
  49. Scoles GJ, Gill BS, Xin Z-Y, Clarke BC, Mcintyre CL, Chapman C and Appels R (1988) Frequent duplication and deletion events in the 5S RNA genes and the associated spacer regions of theTriticeae. Plant Syst. Evol. 160: 105-122. https://doi.org/10.1007/BF00936713
  50. Shishido R, Sano Y and Fukui K (2000) Ribosomal DNAs: an exception to the conservation of gene order in rice genomes. Mol. Gen. Genet. 263: 586-591. https://doi.org/10.1007/s004380051205
  51. Singh AK (1979) Cucurbitaceae and polyploidy. Cytologia 44: 897-905. https://doi.org/10.1508/cytologia.44.897
  52. Singh M, Kumar R, Nagpure NS, Kushwaha B, Mani I, Chauhan UK and Lakra WS (2009) Population distribution of 45S and 5S rDNA in golden mahseer, Tor putitora: population-specific FISH marker. J. Genet. 88: 315-320. https://doi.org/10.1007/s12041-009-0045-7
  53. Sumner AT (1990) Chromosome banding. London, Unwin Hyman.
  54. Vasconcelos S, Souza AA, Gusmao CL, Milani M, Benko-Iseppon AM and Brasileiro-Vidal AC (2010) Heterochromatin and rDNA 5S and 45S sites as reliable cytogenetic markers for castor bean (Ricinus communis, Euphorbiaceae). Micron 41: 746-753. https://doi.org/10.1016/j.micron.2010.06.002
  55. Wako T, Furushima-Shimogawara R, Belyaev ND, Turner BM and Fukui K (2002) Cell cycle dependent and lysine residue-specific dynamic changes of histone H4 acetylation in barley. Plant Mol. Biol. 49: 645-653.
  56. Wako T, Murakami Y and Fukui K (2005) Comprehensive analysis of dynamics of histone H4 acetylation in mitotic barley cells. Genes Genet. Syst. 80: 269-276 https://doi.org/10.1266/ggs.80.269
  57. Wang X, He C, Moore SC and Ausio J (2001) Effects of histone acetylation on the solubility and folding of the chromatin fiber. J. Biol. Chem. 276: 12764-12768. https://doi.org/10.1074/jbc.M100501200
  58. Whitaker TW (1933) Cytological and phylogenetic studies in the Cucurbitaceae. Bot. Gaz. 94: 780-790. https://doi.org/10.1086/334347
  59. Wiegant J, Ried T, Nederlof PM, van der Ploeg M, Tanke HJ and Raap AK (1991) In situ hybridization with fluoresceinated DNA. Nucleic Acids Res. 19: 3237-3241. https://doi.org/10.1093/nar/19.12.3237
  60. Xu YH, Yang F, Cheng YL, Ma L, Wang JB and Li LJ (2007) Comparative analysis of rDNA distribution in metaphase chromosomes of Cucurbitaceae species. Hereditas (Beijing) 29: 614-620. https://doi.org/10.1360/yc-007-0614

Cited by

  1. Karyotype analysis of Panax ginseng C.A.Meyer, 1843 (Araliaceae) based on rDNA loci and DAPI band distribution vol.6, pp.4, 2011, https://doi.org/10.3897/compcytogen.v6i4.3740
  2. Dynamics of sex expression and chromosome diversity in Cucurbitaceae: a story in the making vol.94, pp.4, 2015, https://doi.org/10.1007/s12041-015-0562-5
  3. FISH Karyotype Analysis of Four Wild Cucurbitaceae Species Using 5S and 45S rDNA Probes and the Emergence of New Polyploids in Trichosanthes kirilowii Maxim vol.33, pp.6, 2011, https://doi.org/10.7235/hort.2015.15101
  4. Karyomorphological studies of six commercially cultivated edible cucurbits: bitter gourd, sponge gourd, ridge gourd, snake gourd, ash gourd and cucumber vol.71, pp.2, 2018, https://doi.org/10.1080/00087114.2018.1450800
  5. Analysis of Chromosome Composition of Gastrodia elata Blume by Fluorescent in situ Hybridization using rDNA and Telomeric Repeat Probes vol.26, pp.2, 2011, https://doi.org/10.7783/kjmcs.2018.26.2.113
  6. Intragenomic heterogeneity of intergenic ribosomal DNA spacers in Cucurbita moschata is determined by DNA minisatellites with variable potential to form non-canonical DNA conformations vol.26, pp.3, 2011, https://doi.org/10.1093/dnares/dsz008
  7. Pre-labelled oligo probe-FISH karyotype analyses of four Araliaceae species using rDNA and telomeric repeat vol.41, pp.7, 2011, https://doi.org/10.1007/s13258-019-00786-x
  8. In silico mining and FISH mapping of a chromosome-specific satellite DNA in Capsicum annuum L. vol.41, pp.9, 2011, https://doi.org/10.1007/s13258-019-00832-8
  9. FISH Karyotype Comparison of Platycodon grandiflorus (Jacq.) A. DC. ‘Jangbaek’ and Its Colchicine-Induced Tetraploid ‘Etteumbaek vol.8, pp.4, 2011, https://doi.org/10.9787/pbb.2020.8.4.389