DOI QR코드

DOI QR Code

Subsidence and Nonunion after Anterior Cervical Interbody Fusion Using a Stand-Alone Polyetheretherketone (PEEK) Cage

  • Yang, Jae-Jun (Depatment of Orthopaedic Surgery, Seoul National University College of Medicine) ;
  • Yu, Chang-Hun (Depatment of Orthopaedic Surgery, Seoul National University College of Medicine) ;
  • Chang, Bong-Soon (Depatment of Orthopaedic Surgery, Seoul National University College of Medicine) ;
  • Yeom, Jin-Sup (Depatment of Orthopaedic Surgery, Seoul National University College of Medicine) ;
  • Lee, Jae-Hyup (Depatment of Orthopaedic Surgery, Seoul National University College of Medicine) ;
  • Lee, Choon-Ki (Depatment of Orthopaedic Surgery, Seoul National University College of Medicine)
  • Published : 2011.03.01

Abstract

Background: The purposes of the present study are to evaluate the subsidence and nonunion that occurred after anterior cervical discectomy and fusion using a stand-alone intervertebral cage and to analyze the risk factors for the complications. Methods: Thirty-eight patients (47 segments) who underwent anterior cervical fusion using a stand-alone polyetheretherketone (PEEK) cage and an autologous cancellous iliac bone graft from June 2003 to August 2008 were enrolled in this study. The anterior and posterior segmental heights and the distance from the anterior edge of the upper vertebra to the anterior margin of the cage were measured on the plain radiographs. Subsidence was defined as $\geq$ a 2 mm (minor) or 3 mm (major) decrease of the segmental height at the final follow-up compared to that measured at the immediate postoperative period. Nonunion was evaluated according to the instability being $\geq$ 2 mm in the interspinous distance on the flexion-extension lateral radiographs. Results: The anterior and posterior segmental heights decreased from the immediate postoperative period to the final follow-up at 1.33 ${\pm}$ 1.46 mm and 0.81 ${\pm}$ 1.27 mm, respectively. Subsidence $\geq$ 2 mm and 3 mm were observed in 12 segments (25.5%) and 7 segments (14.9%), respectively. Among the expected risk factors for subsidence, a smaller anteroposterior (AP) diameter (14 mm vs. 12 mm) of cages (p = 0.034; odds ratio [OR], 0.017) and larger intraoperative distraction (p = 0.041; OR, 3.988) had a significantly higher risk of subsidence. Intervertebral nonunion was observed in 7 segments (7/47, 14.9%). Compared with the union group, the nonunion group had a significantly higher ratio of two-level fusion to one-level fusions (p = 0.001). Conclusions: Anterior cervical fusion using a stand-alone cage with a large AP diameter while preventing anterior intraoperative over-distraction will be helpful to prevent the subsidence of cages. Two-level cervical fusion might require more careful attention for avoiding nonunion.

Keywords

References

  1. Cloward RB. The anterior approach for removal of ruptured cervical disks. J Neurosurg. 1958;15(6):602-17. https://doi.org/10.3171/jns.1958.15.6.0602
  2. Smith GW, Robinson RA. The treatment of certain cervicalspine disorders by anterior removal of the intervertebral disc and interbody fusion. J Bone Joint Surg Am. 1958;40(3):607-24.
  3. Banwart JC, Asher MA, Hassanein RS. Iliac crest bone graft harvest donor site morbidity: a statistical evaluation. Spine (Phila Pa 1976). 1995;20(9):1055-60. https://doi.org/10.1097/00007632-199505000-00012
  4. Silber JS, Anderson DG, Daffner SD, et al. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine (Phila Pa 1976). 2003;28(2):134-9. https://doi.org/10.1097/00007632-200301150-00008
  5. Siddiqui AA, Jackowski A. Cage versus tricortical graft for cervical interbody fusion: a prospective randomised study. J Bone Joint Surg Br. 2003;85(7):1019-25. https://doi.org/10.1302/0301-620X.85B7.13398
  6. Vavruch L, Hedlund R, Javid D, Leszniewski W, Shalabi A. A prospective randomized comparison between the cloward procedure and a carbon fiber cage in the cervical spine: a clinical and radiologic study. Spine (Phila Pa 1976). 2002;27(16):1694-701. https://doi.org/10.1097/00007632-200208150-00003
  7. Kast E, Derakhshani S, Bothmann M, Oberle J. Subsidence after anterior cervical inter-body fusion: a randomized prospective clinical trial. Neurosurg Rev. 2009;32(2):207-14. https://doi.org/10.1007/s10143-008-0168-y
  8. Kulkarni AG, Hee HT, Wong HK. Solis cage (PEEK) for anterior cervical fusion: preliminary radiological results with emphasis on fusion and subsidence. Spine J. 2007;7(2):205-9.
  9. Kandziora F, Pflugmacher R, Schafer J, et al. Biomechanical comparison of cervical spine interbody fusion cages. Spine (Phila Pa 1976). 2001;26(17):1850-7. https://doi.org/10.1097/00007632-200109010-00007
  10. Bartels RH, Donk RD, Feuth T. Subsidence of stand-alone cervical carbon fiber cages. Neurosurgery. 2006;58(3):502-8. https://doi.org/10.1227/01.NEU.0000197258.30821.50
  11. Gercek E, Arlet V, Delisle J, Marchesi D. Subsidence of stand-alone cervical cages in anterior interbody fusion: warning. Eur Spine J. 2003;12(5):513-6. https://doi.org/10.1007/s00586-003-0539-6
  12. Schmieder K, Wolzik-Grossmann M, Pechlivanis I, Engelhardt M, Scholz M, Harders A. Subsidence of the wing titanium cage after anterior cervical interbody fusion: 2-year follow-up study. J Neurosurg Spine. 2006;4(6):447-53. https://doi.org/10.3171/spi.2006.4.6.447
  13. van Jonbergen HP, Spruit M, Anderson PG, Pavlov PW. Anterior cervical interbody fusion with a titanium box cage: early radiological assessment of fusion and subsidence. Spine J. 2005;5(6):645-9. https://doi.org/10.1016/j.spinee.2005.07.007
  14. Bartels RH, Donk R, van Azn RD. Height of cervical foramina after anterior discectomy and implantation of a carbon fiber cage. J Neurosurg. 2001;95(1 Suppl):40-2.
  15. Ha SK, Park JY, Kim SH, Lim DJ, Kim SD, Lee SK. Radiologic assessment of subsidence in stand-alone cervical polyetheretherketone (PEEK) cage. J Korean Neurosurg Soc. 2008;44(6):370-4. https://doi.org/10.3340/jkns.2008.44.6.370
  16. Katsuura A, Hukuda S, Saruhashi Y, Mori K. Kyphotic malalignment after anterior cervical fusion is one of the factors promoting the degenerative process in adjacent intervertebral levels. Eur Spine J. 2001;10(4):320-4. https://doi.org/10.1007/s005860000243
  17. Oda I, Cunningham BW, Buckley RA, et al. Does spinal kyphotic deformity influence the biomechanical characteristics of the adjacent motion segments? An in vivo animal model. Spine (Phila Pa 1976). 1999;24(20):2139-46. https://doi.org/10.1097/00007632-199910150-00014
  18. Shad A, Leach JC, Teddy PJ, Cadoux-Hudson TA. Use of the Solis cage and local autologous bone graft for anterior cervical discectomy and fusion: early technical experience. J Neurosurg Spine. 2005;2(2):116-22. https://doi.org/10.3171/spi.2005.2.2.0116
  19. Paramore CG, Dickman CA, Sonntag VK. Radiographic and clinical follow-up review of Caspar plates in 49 patients. J Neurosurg. 1996;84(6):957-61. https://doi.org/10.3171/jns.1996.84.6.0957
  20. Bose B. Anterior cervical fusion using Caspar plating: analysis of results and review of the literature. Surg Neurol. 1998;49(1):25-31. https://doi.org/10.1016/S0090-3019(97)00306-6
  21. Gaudinez RF, English GM, Gebhard JS, Brugman JL, Donaldson DH, Brown CW. Esophageal perforations after anterior cervical surgery. J Spinal Disord. 2000;13(1):77-84. https://doi.org/10.1097/00002517-200002000-00015
  22. Steffen T, Tsantrizos A, Fruth I, Aebi M. Cages: designs and concepts. Eur Spine J. 2000;9 Suppl 1:S89-94. https://doi.org/10.1007/PL00010027
  23. Barsa P, Suchomel P. Factors affecting sagittal malalignment due to cage subsidence in standalone cage assisted anterior cervical fusion. Eur Spine J. 2007;16(9):1395-400. https://doi.org/10.1007/s00586-006-0284-8
  24. Lee SH, Suk KS, Kim KT, Lee JH, Seo EM, Im YS. Outcome analysis of single level anterior cervical fusion using interbody PEEK cage with autologous iliac bone graft. J Korean Orthop Assoc. 2009;44(1):93-101. https://doi.org/10.4055/jkoa.2009.44.1.93
  25. Toth JM, Wang M, Estes BT, Scifert JL, Seim HB 3rd, Turner AS. Polyetheretherketone as a biomaterial for spinal applications. Biomaterials. 2006;27(3):324-34. https://doi.org/10.1016/j.biomaterials.2005.07.011
  26. Wenz LM, Merritt K, Brown SA, Moet A, Steffee AD. In vitro biocompatibility of polyetheretherketone and polysulfone composites. J Biomed Mater Res. 1990;24(2):207-15. https://doi.org/10.1002/jbm.820240207
  27. Cannada LK, Scherping SC, Yoo JU, Jones PK, Emery SE. Pseudoarthrosis of the cervical spine: a comparison of radiographic diagnostic measures. Spine (Phila Pa 1976). 2003;28(1):46-51. https://doi.org/10.1097/00007632-200301010-00012

Cited by

  1. Anterior cervical discectomy and fusion: Comparison of titanium and polyetheretherketone cages vol.13, pp.None, 2011, https://doi.org/10.1186/1471-2474-13-172
  2. Radiological Outcomes of Static vs Expandable Titanium Cages After Corpectomy vol.72, pp.4, 2011, https://doi.org/10.1227/neu.0b013e318282a558
  3. What are the associative factors of adjacent segment degeneration after anterior cervical spine surgery? Comparative study between anterior cervical fusion and arthroplasty with 5-year follow-up MRI a vol.22, pp.5, 2011, https://doi.org/10.1007/s00586-012-2613-4
  4. Comparison of titanium and polyetheretherketone (PEEK) cages in the surgical treatment of multilevel cervical spondylotic myelopathy: a prospective, randomized, control study with over 7-year follow-u vol.22, pp.7, 2011, https://doi.org/10.1007/s00586-013-2772-y
  5. Impact of Age and Duration of Symptoms on Surgical Outcome of Single-Level Microscopic Anterior Cervical Discectomy and Fusion in the Patients with Cervical Spondylotic Radiculopathy vol.2014, pp.None, 2011, https://doi.org/10.1155/2014/808596
  6. Imaging Current Spine Hardware: Part 1, Cervical Spine and Fracture Fixation vol.203, pp.2, 2011, https://doi.org/10.2214/ajr.13.12216
  7. PEEK Cages versus PMMA Spacers in Anterior Cervical Discectomy: Comparison of Fusion, Subsidence, Sagittal Alignment, and Clinical Outcome with a Minimum 1-Year Follow-Up vol.2014, pp.None, 2014, https://doi.org/10.1155/2014/398396
  8. Dynamic Radiographic Criteria for Detecting Pseudarthrosis Following Anterior Cervical Arthrodesis vol.96, pp.7, 2014, https://doi.org/10.2106/jbjs.m.00167
  9. Usefulness of Anterior Cervical Interbody Fusion Using Locally Harvested Bone: Locally Harvested Bone Versus Autogenous Iliac Bone vol.49, pp.2, 2011, https://doi.org/10.4055/jkoa.2014.49.2.147
  10. Clinical relevance of neuroforaminal patency after anterior cervical discectomy and fusion vol.156, pp.6, 2014, https://doi.org/10.1007/s00701-014-2090-0
  11. Subsidence of Polyetheretherketone Cage after Anterior Cervical Fusion vol.49, pp.3, 2014, https://doi.org/10.4055/jkoa.2014.49.3.185
  12. Risk factors for subsidence in anterior cervical fusion with stand-alone polyetheretherketone (PEEK) cages: a review of 82 cases and 182 levels vol.134, pp.10, 2011, https://doi.org/10.1007/s00402-014-2047-z
  13. Influence of cervical bone mineral density on cage subsidence in patients following stand-alone anterior cervical discectomy and fusion vol.24, pp.12, 2011, https://doi.org/10.1007/s00586-014-3725-9
  14. Polyetheretherketone (PEEK) cages in cervical applications: a systematic review vol.15, pp.6, 2015, https://doi.org/10.1016/j.spinee.2013.08.030
  15. Radiological Evaluation of Anterior Cervical Discectomy with Fusion for Degenerative Cervical Disease—Comparison of PEEK and Titanium Cages— vol.29, pp.1, 2011, https://doi.org/10.2531/spinalsurg.29.92
  16. Two-level anterior cervical discectomy and fusion using self-locking stand-alone polyetheretherketone cages with two anchoring clips placed in the upper and lower vertebrae, respectively vol.25, pp.suppl1, 2011, https://doi.org/10.1007/s00590-015-1613-6
  17. A comparison of anterior cervical discectomy and fusion (ACDF) using self-locking stand-alone polyetheretherketone (PEEK) cage with ACDF using cage and plate in the treatment of three-level cervical d vol.25, pp.7, 2016, https://doi.org/10.1007/s00586-016-4391-x
  18. A minimum 2-year comparative study of autologous cancellous bone grafting versus beta-tricalcium phosphate in anterior cervical discectomy and fusion using a rectangular titanium stand-alone cage vol.39, pp.3, 2011, https://doi.org/10.1007/s10143-016-0714-y
  19. Polyetheretherketone (PEEK) for medical applications vol.27, pp.7, 2011, https://doi.org/10.1007/s10856-016-5731-4
  20. Four-Level Anterior Cervical Discectomy and Fusion for Cervical Spondylotic Myelopathy vol.24, pp.3, 2011, https://doi.org/10.1177/1602400313
  21. Cage Subsidence after Anterior Cervical Discectomy and Fusion Using a Cage Alone or Combined with Anterior Plate Fixation vol.24, pp.1, 2016, https://doi.org/10.1177/230949901602400122
  22. Prediction of Cervical Endplate Size: One Size Does Not Fit All vol.39, pp.3, 2016, https://doi.org/10.3928/01477447-20160427-11
  23. Risk Factors of Cage Subsidence after Posterior Lumbar Interbody Fusion vol.23, pp.2, 2011, https://doi.org/10.4184/jkss.2016.23.2.100
  24. Anterior Cervical Fusion Using a Zero-Profile Stand-Alone Cage: Radiological and Clinical Outcomes after More than 2 Years of Follow-Up vol.23, pp.3, 2011, https://doi.org/10.4184/jkss.2016.23.3.146
  25. Usefulness of Anterior Cervical Interbody Fusion Using Locally Harvested Bone: Minimum 5-Year Follow-Up vol.51, pp.3, 2011, https://doi.org/10.4055/jkoa.2016.51.3.191
  26. Is PEEK cage better than titanium cage in anterior cervical discectomy and fusion surgery? A meta-analysis vol.17, pp.None, 2011, https://doi.org/10.1186/s12891-016-1234-1
  27. Vascularized Fibular Strut Autografts in Spinal Reconstruction after Resection of Vertebral Chordoma or Chondrosarcoma: A Retrospective Series vol.81, pp.1, 2011, https://doi.org/10.1093/neuros/nyw057
  28. Single level anterior cervical discectomy and interbody fusion vol.26, pp.suppl3, 2011, https://doi.org/10.1007/s00586-017-5271-8
  29. Empty polyetheretherketone (PEEK) cages in anterior cervical diskectomy and fusion (ACDF) show slow radiographic fusion that reduces clinical improvement: results from the prospective multicenter “PI vol.11, pp.1, 2011, https://doi.org/10.1186/s13037-017-0128-y
  30. Incidence and clinical relevance of cage subsidence in anterior cervical discectomy and fusion: a systematic review vol.160, pp.4, 2018, https://doi.org/10.1007/s00701-018-3490-3
  31. CO2 Laser Bonding of Silicate-Substituted Strontium Apatite on PEEK and Osteointegration on its Surface vol.782, pp.None, 2011, https://doi.org/10.4028/www.scientific.net/kem.782.145
  32. Fixation of multiple level anterior cervical disc using cages versus cages and plating vol.55, pp.1, 2011, https://doi.org/10.1186/s41983-019-0062-2
  33. Minimally invasive fusion in patients with multilevel cervical spinal stenosis: case report and literature review vol.83, pp.2, 2011, https://doi.org/10.17116/neiro201983021109
  34. Integrated screws with cage spacer system in the treatment of cervical spine degenerative disease with a minimum follow-up of 2 years vol.11, pp.2, 2019, https://doi.org/10.4103/jotr.jotr_44_15
  35. Clinical Efficacy of Cages in Anterior Cervical Fusion for Degenerative Cervical Disease vol.26, pp.4, 2019, https://doi.org/10.4184/jkss.2019.26.4.172
  36. Superiority of Multidetector Computed Tomography With 3-Dimensional Volume Rendering Over Plain Radiography in the Assessment of Spinal Surgical Instrumentation Complications in Patients With Cancer : vol.43, pp.1, 2011, https://doi.org/10.1097/rct.0000000000000784
  37. Clinical and Radiological Outcomes of Anterior Approach Microscopic Surgery for the Pincer Mechanism in Cervical Spondylotic Myelopathy vol.2019, pp.None, 2011, https://doi.org/10.1155/2019/9175234
  38. Risk Factors of Allogenous Bone Graft Collapse in Two-Level Anterior Cervical Discectomy and Fusion vol.62, pp.4, 2011, https://doi.org/10.3340/jkns.2019.0008
  39. Locking Stand-Alone Cage Constructs for the Treatment of Cervical Spine Degenerative Disease vol.13, pp.4, 2019, https://doi.org/10.31616/asj.2018.0234
  40. Subsidence after Anterior Cervical Interbody Fusion Using a Zero-Profile Device vol.5, pp.2, 2019, https://doi.org/10.21129/nerve.2019.5.2.33
  41. Feasibility of local bone dust as a graft material in anterior cervical discectomy and fusion vol.31, pp.4, 2019, https://doi.org/10.3171/2019.3.spine181416
  42. Feasibility of local bone dust as a graft material in anterior cervical discectomy and fusion vol.31, pp.4, 2019, https://doi.org/10.3171/2019.3.spine181416
  43. Heterotopic ossification and radiographic adjacent-segment disease after cervical disc arthroplasty : Presented at the 2019 AANS/CNS Joint Section on Disorders of the Spine and Peripheral Nerves vol.31, pp.5, 2011, https://doi.org/10.3171/2019.5.spine19257
  44. Heterotopic ossification and radiographic adjacent-segment disease after cervical disc arthroplasty : Presented at the 2019 AANS/CNS Joint Section on Disorders of the Spine and Peripheral Nerves vol.31, pp.5, 2011, https://doi.org/10.3171/2019.5.spine19257
  45. Risk Factors of Cage Subsidence in Patients Received Minimally Invasive Transforaminal Lumbar Interbody Fusion vol.45, pp.19, 2011, https://doi.org/10.1097/brs.0000000000003557
  46. RADIOGRAPHIC OUTCOMES OF ANTERIOR CERVICAL DISCECTOMY AND FUSION SURGERY BY USING CUSHIONED TITANIUM CAGE vol.23, pp.2, 2020, https://doi.org/10.1142/s0218957720500074
  47. Biomechanical Analysis of Allograft Spacer Failure as a Function of Cortical-Cancellous Ratio in Anterior Cervical Discectomy/Fusion: Allograft Spacer Alone Model vol.10, pp.18, 2020, https://doi.org/10.3390/app10186413
  48. Comparison of the effectiveness and safety of bioactive glass ceramic to allograft bone for anterior cervical discectomy and fusion with anterior plate fixation vol.43, pp.5, 2011, https://doi.org/10.1007/s10143-019-01225-x
  49. In vitro osteogenesis of rat bone marrow mesenchymal cells on PEEK disks with heat-fixed apatite by CO 2 laser bonding vol.21, pp.1, 2020, https://doi.org/10.1186/s12891-020-03716-1
  50. Comparative Analysis of Cage Subsidence in Anterior Cervical Decompression and Fusion: Zero Profile Anchored Spacer (ROI-C) vs. Conventional Cage and Plate Construct vol.8, pp.None, 2011, https://doi.org/10.3389/fsurg.2021.736680
  51. Short Plate with Screw Angle over 20 Degrees Improves the Radiologic Outcome in ACDF: Clinical Study vol.10, pp.9, 2011, https://doi.org/10.3390/jcm10092034
  52. Vacuum plasma sprayed porous titanium coating on polyetheretherketone for ACDF improves the osteogenic ability: An in vitro and in vivo study vol.23, pp.2, 2021, https://doi.org/10.1007/s10544-021-00559-y