DOI QR코드

DOI QR Code

New application of layered silicates for carbon fiber reinforced carbon composites

  • Jeong, Euigyung (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Kim, Jinhoon (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Cho, Se Ho (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Kim, Jeong-Il (DACC Co., Ltd.) ;
  • Han, In-Sub (Reaction & Separation Materials Research Center, Korea Institute of Energy Research) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
  • Published : 2011.03.25

Abstract

To investigate potential use of a layered silicate, illite, for carbon fiber-reinforced (C/C) composites, the C/C composites were prepared at different carbonization temperatures, specifically 1000 $^{\circ}C$ and 1650 $^{\circ}C$ using illite. The physical and chemical changes in the prepared C/C composites that were induced by the addition of illite and anti-oxidation and mechanical properties of the composites were investigated. A carbothermal reaction occurred due to the addition of illite when the composite was prepared at 1650 $^{\circ}C$, which resulted in the formation of SiC from the illite and carbon. The physical structures of the composites changed due to the increased interfacial adhesion between the reinforcing carbon fibers and the carbon matrix, which resulted increased bulk densities, and decreased porosities. The carbothermal reaction and physical structural changes that were induced by the addition of illite synergistically improved the anti-oxidation properties of the prepared composites, which were observed as a delay in oxidation. In addition, illite filler also improved flexural strength of the composite, due to the increased interfacial adhesion induced by illite addition. Therefore, the application of the layered silicate, illite, for C/C composites can be quite promising.

Keywords

References

  1. S. Sinha Ray, M. Okamoto, Prog. Polym. Sci. 28 (2003) 1539. https://doi.org/10.1016/j.progpolymsci.2003.08.002
  2. S. Xuetao, L. Kezhi, L. Hejun, D. Hongying, C. Weifeng, L Fengtao, Carbon 48 (2010) 344. https://doi.org/10.1016/j.carbon.2009.09.035
  3. B. Chen, L.T. Zhang, L.F. Cheng, X.G. Luan, Carbon 47 (6) (2009) 1474. https://doi.org/10.1016/j.carbon.2009.01.040
  4. M. Rollin, S. Jouannigot, J. Lamon, R. Pailler, Compos. Sci. Technol. 69 (9) (2009) 1442. https://doi.org/10.1016/j.compscitech.2008.09.023
  5. C. Li, A. Crosky, Compos. Sci. Technol. 66 (15) (2006) 2633. https://doi.org/10.1016/j.compscitech.2006.03.025
  6. X. Lu, R. Luo, Y. Ni, Q. Xiang, Compos. Part A: Appl. Sci. 40 (2) (2009) 225. https://doi.org/10.1016/j.compositesa.2008.11.007
  7. J.F. Huang, F. Deng, X. Xiong, H. Li, K. Li, L. Cao, J. Wu, Adv. Eng. Mater. 9 (4) (2007) 322. https://doi.org/10.1002/adem.200600235
  8. X. Wu, L.R. Radovic, Carbon 44 (1) (2006) 141. https://doi.org/10.1016/j.carbon.2005.06.038
  9. C.G. Papakonstantinou, P. Balaguru, R.E. Lyon, Compos. Part B: Eng. 32 (8) (2001) 637. https://doi.org/10.1016/S1359-8368(01)00042-7
  10. S.J. Park, M.G. Seo, J.R. Lee, Polymer (Korea) 25 (6) (2001) 866.
  11. E. Jeong, J. Kim, Y.S. Lee, Carbon Lett. 11 (4) (2011) 293. https://doi.org/10.5714/CL.2010.11.4.293
  12. E. Jeong, J.W. Lim, S.J. In, Y.S. Lee, J. Ind. Eng. Chem. (2010), doi:10.1016/j.jiec.2010.10.012.
  13. ClemensF.J. Wallquist, V. Buchser, W. Wegmann, M.T. Graule, Ceram. Int. 33 (2) (2007) 491.
  14. A. Hahnel, V. Ischenko, J. Woltersdorf, Mater. Chem. Phys. 110 (2-3) (2008) 303. https://doi.org/10.1016/j.matchemphys.2008.02.009
  15. H.G. Cho, E.Y. Kim, G.Y. Jeong, Miner. Soc. Korea 14 (1) (2001) 12.
  16. S.M. Yun, S.J. Kim, S.J. Park, S.H. Lee, Y.S. Lee, Res. Chem. Intermediat. 36 (6-7) (2010) 731. https://doi.org/10.1007/s11164-010-0175-9
  17. S. Yajima, K. Okamura, J. Hayashi, M. Omori, J. Am. Ceram. Soc. 59 (7-8) (1976) 324. https://doi.org/10.1111/j.1151-2916.1976.tb10975.x
  18. L.A. Harris, C.R. Kennedy, G.C.T. Wei, F.P. Jeffers, J. Am. Ceram. Soc. 67 (6) (1984) C121.
  19. S.P. Appleyard, B. Rand, Carbon 40 (6) (2002) 817. https://doi.org/10.1016/S0008-6223(01)00204-4
  20. L.M. Manocha, E. Yasuda, Y. Tanabe, S. Kimura, Carbon 26 (3) (1988) 333. https://doi.org/10.1016/0008-6223(88)90224-2
  21. L.M. Manocha, Composites 19 (4) (1988) 311. https://doi.org/10.1016/0010-4361(88)90008-0
  22. L. Kempfer, Mater. Eng. 107 (1) (1990) 41.
  23. X. Yang, S.J. Guo, B.F. Chen, Y.D. Lian, Powder Technol. 164 (2) (2006) 75. https://doi.org/10.1016/j.powtec.2006.02.006
  24. K. Terada, E. Yonemochi, Solid State Ionics 172 (1-4) (2004) 459. https://doi.org/10.1016/j.ssi.2004.03.032
  25. C.D. Doyle, Anal. Chem. 33 (1) (1961) 77. https://doi.org/10.1021/ac60169a022
  26. J.S. Im, S.J. Kim, P.H. Kang, Y.S. Lee, J. Ind. Eng. Chem. 15 (5) (2009) 699. https://doi.org/10.1016/j.jiec.2009.09.048

Cited by

  1. Effects of heat-treatment temperature on carbon-based composites with added illite vol.12, pp.2, 2011, https://doi.org/10.5714/cl.2011.12.2.095
  2. Application of Composite Materials in Modern Constructions vol.542, pp.None, 2013, https://doi.org/10.4028/www.scientific.net/kem.542.119
  3. 탄소섬유와 에폭시 기지의 계면강도 증가를 위한 황산/질산 양극산화에 관한 영향 vol.37, pp.1, 2011, https://doi.org/10.7317/pk.2013.37.1.61
  4. Interfacial micromechanics of carbon fiber-reinforced polyphenylene sulfide composites vol.21, pp.4, 2011, https://doi.org/10.1080/15685543.2014.878875
  5. Preparation and characterization of carbon fiber-reinforced thermosetting composites: a review vol.16, pp.2, 2011, https://doi.org/10.5714/cl.2015.16.2.067
  6. Improving interfacial and mechanical properties of glass fabric/polyphenylene sulfide composites via grafting multi-walled carbon nanotubes vol.9, pp.56, 2011, https://doi.org/10.1039/c9ra05805b
  7. Mechanical Properties Research of Carbon Fiber Composite Laminates vol.980, pp.None, 2011, https://doi.org/10.4028/www.scientific.net/msf.980.107