DOI QR코드

DOI QR Code

Effect of Thermo-gradient-assisted Solvent Evaporation on the Enhancement of the Electrical Properties of 6,13-Bis(triisopropylsilylethynyl)-Pentacene Thin-film Transistors

  • Keum, Chang-Min (School of Electrical Engineering, Seoul National University) ;
  • Bae, Jin-Hyuk (School of Electrical Engineering, Seoul National University) ;
  • Kim, Won-Ho (School of Electrical Engineering, Seoul National University) ;
  • Kim, Min-Hoi (School of Electrical Engineering, Seoul National University) ;
  • Park, Jae-Hoon (School of Electrical Engineering, Seoul National University) ;
  • Lee, Sin-Doo (School of Electrical Engineering, Seoul National University)
  • Published : 2011.05.15

Abstract

We describe the effect of thermo-gradient-assisted solvent evaporation of an organic semiconductor, 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-PEN), on the enhancement of the electrical properties of TIPS-PEN thin-film transistors (TFTs). The TIPS-PEN molecules are found to align themselves along the direction of the temperature gradient, from a high temperature region to a low temperature region, in the substrate. In contrast to typical solvent evaporation, thermo-gradient-assisted solvent evaporation enhances the mobility and the current on-off ratio of the TIPS-PEN TFTs from 0.05 $cm^2$/Vs and $10^4$ to 0.12 $cm^2$/Vs and $10^5$, respectively. The thermo-gradient evaporation method should be useful in improving the electrical properties of the solution-processed TFTs.

Keywords

References

  1. P. T. Herwig and K. Mullen, Adv. Mater. 11, 480 (1999). https://doi.org/10.1002/(SICI)1521-4095(199904)11:6<480::AID-ADMA480>3.0.CO;2-U
  2. G. Horowitz, Adv. Mater. 10, 365 (1998). https://doi.org/10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U
  3. H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y.-Y. Lin and A. Dodabalapur, Nature 404, 478 (2000). https://doi.org/10.1038/35006603
  4. S. F. Nelson, Y.-Y. Lin, D. J. Gundlach and T. N. Jackson, Appl. Phys. Lett. 72, 1854 (1998). https://doi.org/10.1063/1.121205
  5. A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl and Z. Bao, Nature 444, 913 (2006). https://doi.org/10.1038/nature05427
  6. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu and E. P. Woo, Science 290, 2123 (2000). https://doi.org/10.1126/science.290.5499.2123
  7. J. E. Anthony, J. S. Brooks, D. L. Eaton and S. R. Parkin, J. Am. Chem. Soc. 123, 9482 (2001). https://doi.org/10.1021/ja0162459
  8. J. H. Kwon, S. I. Shin, C. H. Kim, I. K. You, G. I. Cho and B. K. Ju, J. Korean Phys. Soc. 55, 72 (2009). https://doi.org/10.3938/jkps.55.72
  9. F. Gamier, G. Horowitz, D. Fichou and A. Yassar, Synth. Met. 81, 163 (1996). https://doi.org/10.1016/S0379-6779(96)03761-7
  10. H. Sirringhaus, Adv. Mater. 17, 2411 (2005). https://doi.org/10.1002/adma.200501152
  11. J. Chen, C. K. Tee, M. Shtein, J. Anthony and D. C. Martin, J. Appl. Phys. 103, 114513 (2008). https://doi.org/10.1063/1.2936978
  12. R. L. Headrick, S. Wo, F. Sansoz and J. E. Anthony, Appl. Phys. Lett. 92, 063302 (2008). https://doi.org/10.1063/1.2839394
  13. H. A. Becerril, M. E. Roberts, Z. Liu, J. Locklin and Z. Bao, Adv. Mater. 20, 2588 (2008). https://doi.org/10.1002/adma.200703120
  14. W. H. Lee, D. H. Kim, Y. S. Jang, J. H. Cho, M. K. Hwang, Y. D. Park, Y. H. Kim, J. I. Han and K. Cho, Appl. Phys. Lett. 90, 132106 (2007). https://doi.org/10.1063/1.2717087
  15. D. J. Gundlach et al., Nat. Mater. 7, 216 (2008). https://doi.org/10.1038/nmat2122
  16. J.-H. Bae, J. Park, C.-M. Keum, W.-H. Kim, M.-H. Kim, S.-O. Kim, S. K. Kwon and S.-D. Lee, Org. Electron. 11, 784 (2010). https://doi.org/10.1016/j.orgel.2010.01.019
  17. S. Scheinert, G. Paasch and T. Doll, Synth. Met. 139, 233 (2003). https://doi.org/10.1016/S0379-6779(03)00130-9
  18. D. Gupta, N. Jeon and S. Yoo, Org. Electron. 9, 1026 (2008). https://doi.org/10.1016/j.orgel.2008.08.005
  19. V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers and M. E. Gershenson, Phys. Rev. Lett. 93, 086602 (2004). https://doi.org/10.1103/PhysRevLett.93.086602

Cited by

  1. Effects of the solvent polarity of a polymeric insulator on field-effect mobility in an organic thin-film transistor vol.81, pp.None, 2013, https://doi.org/10.1016/j.sse.2012.12.014
  2. Comparative Study on Interfacial Traps in Organic Thin-Film Transistors According to Deposition Methods of Organic Semiconductors vol.30, pp.2, 2013, https://doi.org/10.12925/jkocs.2013.30.2.290
  3. Effect of interface-dependent crystalline boundary on sub-threshold characteristics in a solution-processed 6,13-bis(triisopropylsilylethynyl)-pentacene thin-film transistor vol.65, pp.3, 2011, https://doi.org/10.1051/epjap/2014130417
  4. Poly(4-vinylphenol-co-methyl methacrylate)/titanium dioxide nanocomposite gate insulators for 6,13-bis(triisopropylsilylethynyl)-pentacene thin-film transistors vol.65, pp.11, 2011, https://doi.org/10.3938/jkps.65.1956
  5. Influence of the active layer pattern on the electrical characteristics of organic inverters vol.65, pp.11, 2011, https://doi.org/10.3938/jkps.65.1965
  6. Molecular Distribution depending on the Cooling-off Condition in a Solution-Processed 6,13-Bis(triisopropylsilylethynyl)-Pentacene Thin-Film Transistor vol.31, pp.3, 2011, https://doi.org/10.12925/jkocs.2014.31.3.402