Column Experiments on Removal of Dissolved Arsenic Using Microorganism and Nano-sized Pd-Akaganeite Particles

미생물과 Pd-Akaganeite 나노입자를 이용한 용존 비소 제거를 위한 컬럼 실험 연구

  • 김현철 (전남대학교 에너지자원공학과) ;
  • 이종운 (전남대학교 에너지자원공학과) ;
  • 노열 (전남대학교 지구환경과학부) ;
  • 심연식 (한국광해관리공단)
  • Published : 2011.10.31

Abstract

The effects of microorganism (Clostridium sp.), nano-sized Pd-akaganeite particles, and mixture of the microorganism and the nanoparticles on the removal of dissolved As(III) were investigated through experiments using the columns filled with glass beads. The concentrations of dissolved arsenic in the column effluents after 32-day experiments showed that the removal efficiencies were 10.6%, 13.2%, 28.3%, and 83.8% for control, microbial, nanoparticles, and mixture columns, respectively. Injection of the mixture of microbe and nanoparticles to the column led to the highest removal of the dissolved arsenic, and the result was likely due to microbial formation of nano-sized magnetite after reduction of Fe(III) in akaganeite to Fe(II) and subsequent adsorption of dissolved arsenic onto the magnetite. However, the removed arsenic partly appeared to be adsorbed onto colloidal suspensions in the mixture column, which may enhance the potential of arsenic transport for a long distance in groundwater aquifer.

대수층을 모사하기 위하여 컬럼을 유리 비드(bead)로 충진한 후 3가 비소 용액을 통과시키며 각 컬럼에 미생물(Clostridium sp.), Pd-akaganeite 나노입자, 미생물과 나노입자 혼합물을 주입하였다. 총 32일에 걸쳐 삼출수 내 비소 농도를 측정하여 주입물에 의한 용존 비소 저감 효과를 비교한 결과, 비교(control) 컬럼, 미생물 주입 컬럼, 나노입자 주입 컬럼, 미생물과 나노입자 주입 컬럼 삼출수 내에서 각각 10.6%, 13.2%, 28.3%, 83.8%의 저감 효과를 보였다. 다른 컬럼과 비교하였을 때 미생물과 나노입자를 동시에 주입한 경우 매우 높은 저감 효과를 보임으로써 용존 비소 제거에 가장 효과적인 방법으로 나타났다. 용존 비소의 증진된 저감 효과는 미생물에 의해 akaganeite 내 3가 철이 2가 철로 환원되며 자철석(magnetite) 나노입자를 형성하고 용존 비소가 이에 흡착되었기 때문으로 보인다. 그러나 미생물과 나노입자를 주입한 경우 저감된 비소 중 일부는 유리 비드 표면에 고정화된 것보다는 콜로이드에 흡착된 상태로 나타나 지하수 흐름을 따라 이동 거리가 길어질 가능성도 있다.

Keywords

References

  1. 고경석, 오인숙, 김재곤, 안주성, 김형수, 석희준, 2006, "황산염처리 산화철 피복모래의 비소 흡착능 평가 연구," 2006년 춘계학술발표회 초록집, 대한자원환경지질학회, 제주, 4월 19일-4월 21일, pp. 445-448.
  2. 고일원, 김주용, 김경웅, 안주성, 2005, "비소의 적철석 표면 흡착에 토양 유기물이 미치는 영향: 화학종 모델링과 흡착 기작," 자원환경지질, 제38권 1호, pp. 23-31.
  3. 고일원, 이상우, 김주용, 김경웅, 이철효, 2004, "나노 크기 적철석 입자 피복 모래를 이용한 비소 3가와 비소 5가의 제거," 지하수토양환경, 제9권 1호, pp. 63-69.
  4. 김순오, 정영일, 조현구, 최선희, 이현휘, 2007, "비소와 영가철 및 철 (수)산화물과의 표면반응에 대한 X선 흡수분광 예비연구," 한국광물학회.한국암석학회 공동학술발표회초록집, 한국광물학회, 안동, 5월 31일, pp. 131-134.
  5. 김현종, 이종운, 전효택, 노열, 2011, "철수산화물 나노입자를 이용한 수용액 내 비소의 흡착처리 연구," 한국지구시스템공학회지, 제48권 4호, pp. 438-447.
  6. 노열, 이종운, 전효택, 김인선, 2009, 탈염소화.금속환원 박테리아와 미생물 생성 나노입자를 이용한 지하수 복원 기술개발, 환경기술개발사업 1차년도 보고서, 한국환경기술진흥원, p. 168.
  7. 안주성, 고경석, 전철민, 2007, "국내 지하수의 비소 산출양상 - 지하수 수질측정망 결과를 바탕으로," 2007년 추계지질과학연합학술대회 초록집, 대한자원환경지질학회, 춘천, 10월 25일-10월 26일, p. 72.
  8. 정영일, 김인선, 김순오, 2006, "영가철을 이용한 광미 용출액으로부터 비소 제거에 관한 연구," 대한지질학회 2006년 추계학술대회초록집, 대한지질학회, 대전, 10월 26일-10월 27일, p. 149.
  9. 정영일, 이우춘, 조현구, 윤성택, 김순오, 2008, "비소의 two-line ferrihydrite에 대한 흡착반응," 한국광물학회지, 제21권 3호, pp. 227-237.
  10. An, B., Liang, Q. and Zhao, D., 2011, "Removal of arsenic(V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles," Water Research, Vol. 45, pp. 1961-1972. https://doi.org/10.1016/j.watres.2011.01.004
  11. Chatterjee, A., Das, D., Mandal, B.K., Chowdhury, T.R., Samanta G. and Chakraborti, D., 1995, "Arsenic in groundwater in six districts of west Bengal, India; the biggest arsenic calamity in the world," Analyst, Vol. 120, pp. 643-650. https://doi.org/10.1039/an9952000643
  12. Chowdhury, T.R., Basu, G.K., Mandal, B.K., Biswas, B.K., Samanta, G., Chowdhury, U.K., Chanda, C.R., Lodh, D., Roy, S.L., Saha, K.C., Roy, S., Kabir, S., Quamruzzaman, Q. and Chakraborti, D., 1999, "Arsenic poisoning in the Ganges delta," Nature, Vol. 401, pp. 545-546. https://doi.org/10.1038/44052
  13. Das, D., Samanta, G., Mandal, B.K., Chowdhury, T.R., Chanda, C.R., Chowdhury, P.P., Basu, G.K. and Chakraborti, D., 1996, "Arsenic in groundwater in six districts of West Bengal, India," Environmental Geochemistry and Health, Vol. 18, pp. 5-16. https://doi.org/10.1007/BF01757214
  14. Dixit, S. and Hering, J.G., 2003, "Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility," Environmental Science and Technology, Vol. 37, pp. 4182-4189. https://doi.org/10.1021/es030309t
  15. Fuller, C.C., Davis, J.A. and Waychunas, G.A., 1993, "Surface chemistry of ferrihydrite: part 2. Kinetics of arsenate adsorption and coprecipitation," Geochimica et Cosmochimica Acta, Vol. 57, pp. 2271-2282. https://doi.org/10.1016/0016-7037(93)90568-H
  16. Hildebrand, H., Kühnel, D., Potthoff, A., Mackenzie, K., Springer, A. and Schirmer, K., 2010, "Evaluating the cytotoxicity of palladium/magnetite nano-catalysts intended for wastewater treatment," Environmental Pollution, Vol. 158, pp. 65-73. https://doi.org/10.1016/j.envpol.2009.08.021
  17. Hildebrand, H., Mackenzie, K. and Kopinke, F.-D., 2009, "Highly active Pd-on-magnetite nano-catalysts for aqueous phase hydrodechlorination reactions," Environmental Science and Technology, Vol. 43, pp. 3254-3259. https://doi.org/10.1021/es802726v
  18. Jung, Y.I., Cho, H.G., Kim, I.S. and Kim, S.O., 2007, "Application of zerovalent iron for the removal of arsenic from leachate of tailing," Abstracts for the International Symposium on Global Environmental Change, Geological Society of Korea, p. 52.
  19. Kim, K.-R., Lee, B.-T. and Kim, K.-W., 2011, "Arsenic stabilization in mine tailings using nano-sized magnetite and zero valent iron with the enhancement of mobility by surface coating," Journal of Geochemical Exploration, (in press).
  20. Kim, S.O., Jung, Y.I., Cho, H.G. Park., W.J. and Kim, I.S., 2007, "Removal of arsenic from leachate of tailing using laboratory-synthesized zerovalent iron." Journal of Applied and Biological Chemistry, Vol. 50, pp.6-12.
  21. Masue, Y., Loeppert, R.H. and Kramer, T.A., 2007, "Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum:iron hydroxides," Environmental Science and Technology, Vol. 41, pp. 837-842. https://doi.org/10.1021/es061160z
  22. Mayo, J.T., Yavuz, C., Yean, S., Cong, L., Shipley, H., Yu, W., Faljner, J., Kan, A., Tomson, M. and Colvin, V.L., 2007, "The effect of nanocrystalline magnetite size on arsenic removal," Science and Technology of Advanced Materials, Vol. 8, pp. 71-75. https://doi.org/10.1016/j.stam.2006.10.005
  23. Michalke, K., Wickenheiser, E.B., Mehring, M., Hirner, A.V. and Hensel, R., 2000, "Production of volatile derivatives of metal(loid)s by microflora involved in anaerobic digestion of sewage sludge," Appied and Environmental Microbiology, Vol. 66, pp. 2791-2796. https://doi.org/10.1128/AEM.66.7.2791-2796.2000
  24. Mok, W.M. and Wai, C.M., 1994, Mobilization of arsenic in contaminated river waters, In: Nriagu, J.O. (Ed.), Arsenic in the Environment, Wiley, New York, pp. 99-117.
  25. Newman, D.K., Ahmann, D. and Morel, F.M.M., 1998, "A brief review of microbial arsenate respiration." Geomicrobiology Journal, Vol. 15, pp. 255-268. https://doi.org/10.1080/01490459809378082
  26. Nickson, R., McArthur, J., Burgess, W., Ahmed, K.M., Ravenscroft, P. and Rahman, M., 1998, "Arsenic poisoning of Bangladesh groundwater," Nature, Vol. 395, p. 338. https://doi.org/10.1038/26387
  27. Raven, K.P., Jain, A. and Loeppert, R.H., 1998, "Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes," Environmental Science and Technology, Vol. 32, pp. 344-349. https://doi.org/10.1021/es970421p
  28. Roh, Y., Kim, Y., Lee, S., Jang, H.-D. and Suh, Y.-J., 2008, "Microbial production of ultrafine-grained magnetite by fermentation processes at room temperature," Journal of Nanoscience and Nanotechnology, Vol. 8, pp. 5216-5219. https://doi.org/10.1166/jnn.2008.1258
  29. Sohrin, Y., Matsui, M., Kawashima, M., Hojo, M. and Hasegawa H., 1997, "Arsenic biogeochemistry affected by eutrophication in Lake Biwa, Japan." Environmental Science and Technology, Vol. 31, pp. 2712-2720. https://doi.org/10.1021/es960846w
  30. Stollenwerk, K.G., 2003, Geochemical processes controlling transport of arsenic in groundwater: a review of adsorption, In: Welch, A.H. and Stollenwerk, K.G. (Eds.), Arsenic in Groundwater: Geochemistry and Occurrence, Kluwer, Boston, pp. 67-100.
  31. Wilkie, J.A. and Hering, J.G., 1996, "Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes," Colloid Surface A, Vol. 107, pp. 97-110. https://doi.org/10.1016/0927-7757(95)03368-8
  32. Yadanaparthi, S.K.R., Graybill, D. and von Wandruszka, R., 2009, "Review: adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters," Journal of Hazardous Materials, Vol. 171, pp. 1-5. https://doi.org/10.1016/j.jhazmat.2009.05.103