DOI QR코드

DOI QR Code

Numerical Investigation of Tunable Band-pass\band-stop Plasmonic Filters with Hollow-core Circular Ring Resonator

  • Received : 2010.12.10
  • Accepted : 2011.01.28
  • Published : 2011.03.25

Abstract

In this paper, we numerically study both band-pass and band-stop plasmonic filters based on Metal-Insulator-Metal (MIM) waveguides and circular ring resonators. The band-pass filter consists of two MIM waveguides coupled to each other by a circular ring resonator. The band-stop filter is made up of an MIM waveguide coupled laterally to a circular ring resonator. The propagating modes of Surface Plasmon Polaritons (SPPs) are studied in these structures. By substituting a portion of the ring core with air, while the outer dimensions of the ring resonator are kept constant, we illustrate the possibility of red-shift in resonant wavelengths in order to tune the resonance modes of the proposed filters. This feature is useful for integrated circuits in which we have limitations on the outer dimensions of the filter structure and it is not possible to enlarge the dimension of the ring resonator to reach to longer resonant wavelengths. The results are obtained by a 2D finite-difference time-domain (FDTD) method. The introduced structures have potential applications in plasmonic integrated circuits and can be simply fabricated.

Keywords

References

  1. S. I. Bozhevolnyi, “Plasmonic nanoguides and circuits,” inPlasmonics and Metamaterials (Pan Stanford Publishing,Singapore, 2008).
  2. E. Ozbay, “Plasmonics: merging photonics and electronicsat nanoscale dimensions,” Science 311, 189-193 (2006). https://doi.org/10.1126/science.1114849
  3. J. Jung, “Optimal design of dielectric-loaded surface plasmonpolariton waveguide with genetic algorithm,” J. Opt. Soc.Korea 14, 277-281 (2010). https://doi.org/10.3807/JOSK.2010.14.3.277
  4. K. M. Byun, “Development of nanostructured plasmonicsubstrates for enhanced optical biosensing,” J. Opt. Soc.Korea 14, 65-76 (2010). https://doi.org/10.3807/JOSK.2010.14.2.065
  5. S. Kim, Y. T. Byun, D.-G. Kim, N. Dagli, and Y. Chung,“Widely tunable coupled-ring reflector laser diode consistingof square ring resonators,” J. Opt. Soc. Korea 14, 38-41(2010). https://doi.org/10.3807/JOSK.2010.14.1.038
  6. J. Yoon, G. Lee, S. H. Song, C.-H. Oh, and P.-S. Kim,“Photonic band gaps for surface plasmon modes in dielectricgratings on a flat metal surface,” J. Opt. Soc. Korea 6, 76-82 (2002). https://doi.org/10.3807/JOSK.2002.6.3.076
  7. Z. Fu, Q. Gan, K. Gao, Z. Pan, and F. J. Bartoli, “Numericalinvestigation of a bidirectional wave coupler based onplasmonic Bragg gratings in the near infrared domain,” J.Lightwave Technol. 26, 3699-3703 (2008). https://doi.org/10.1109/JLT.2008.927793
  8. D. K. Gramotev and D. F. P. Pile, “Single-mode sub-wavelengthwaveguide with channel plasmon-polaritons in triangular,”Appl. Phys. Lett. 85, 6323-6325 (2004). https://doi.org/10.1063/1.1839283
  9. E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, andA. Polman, “Near-field visualization of strongly confinedsurface plasmon polaritons in metal-insulator-metal waveguides,”Nano Lett. 8, 2925-2929 (2008). https://doi.org/10.1021/nl801781g
  10. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T.Kobayashi, “Guiding of a one-dimensional optical beamwith nanometer diameter,” Opt. Lett. 22, 475-477 (1997). https://doi.org/10.1364/OL.22.000475
  11. K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi,“Long-range surface plasmon polariton nanowire waveguidesfor device applications,” Opt. Express 14, 314-319 (2006). https://doi.org/10.1364/OPEX.14.000314
  12. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E.Harel, B. E. Koel, and A. G. Requicha, “Local detection ofelectromagnetic energy transport below the diffraction limitin metal nanoparticle plasmon waveguides,” Nature 2, 229-232 (2003). https://doi.org/10.1038/nmat852
  13. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg,“Electromagnetic energy transport via linear chains of silvernanoparticles,” Opt. Lett. 23, 1331-1333 (1998). https://doi.org/10.1364/OL.23.001331
  14. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulsepropagation in metal nanoparticle chain waveguides,” Phys.Rev. B 67, 205402-1-205402-5 (2003). https://doi.org/10.1103/PhysRevB.67.205402
  15. D. F. P. Pile and D. K. Gramotev, “Channel plasmon-polaritonin a triangular groove on a metal surface,” Opt. Lett. 29,1069-1071 (2004). https://doi.org/10.1364/OL.29.001069
  16. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W.Ebbesen, “Channel plasmon-polariton guiding by subwavelengthmetal grooves,” Phys. Rev. Lett. 95, 046802-1-046802-4(2005). https://doi.org/10.1103/PhysRevLett.95.046802
  17. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, andM. Nakagaki, “Characteristics of gap plasmon waveguidewithstub structures,” Opt. Express 16, 16314-16325 (2008). https://doi.org/10.1364/OE.16.016314
  18. S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel dropfilters in a plasmon-polaritons metal,” Opt. Express 14,2932-2937 (2006). https://doi.org/10.1364/OE.14.002932
  19. Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin,“A subwavelength coupler-type MIM optical filter,” Opt.Express 17, 7549-7554 (2009). https://doi.org/10.1364/OE.17.007549
  20. A. Hosseini and Y. Massoud, “Nanoscale surface plasmonbased resonator using rectangular geometry,” Appl. Phys.Lett. 90, 181102 (2007). https://doi.org/10.1063/1.2734380
  21. T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang,“The transmission characteristics of surface plasmon polaritonsin ring resonator,” Opt. Express 17, 24096-24101 (2009). https://doi.org/10.1364/OE.17.024096
  22. B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of ananoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D: Appl. Phys. 43, 385102 (2010). https://doi.org/10.1088/0022-3727/43/38/385102
  23. H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-passplasmonic waveguide filters with nanodisk resonators,”Opt. Express 18, 17922-17927 (2010). https://doi.org/10.1364/OE.18.017922
  24. S. A. Maier, Plasmonics: Fundamentals and Applications(Springer, New York, USA, 2007), Chapter 2.
  25. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman,“Plasmon slot waveguides: towards chip-scale propagationwith subwavelength-scale localization,” Physical Review B73, 035407-1-035407-9 (2006). https://doi.org/10.1103/PhysRevB.73.035407
  26. K. Y. Kim, Y. K. Cho, H.-S. Tae, and J.-H. Lee, “Lighttransmission along dispersive plasmonic gap and its subwavelengthguidance characteristics,” Opt. Express 14, 320-330(2006). https://doi.org/10.1364/OPEX.14.000320
  27. A. D. Rakic, A. B. DjuriSic, J. M. Elazar, and M. L.Majewski, “Optical properties of metallic films for verticalcavityoptoelectronic devices,” Appl. Opt. 37, 5271-5283(1968).
  28. Asanka Pannipitiya, Ivan D.Rukhlenko, Malin premaratne,Haroldo T.Hattori and Govind P. Agrawal, “Improved transmissionmodel for metal-dielectric-metal plasmmonic waveguideswith stub structures,” Opt. Express 18, 6191-6204 (2010). https://doi.org/10.1364/OE.18.006191
  29. I. Wolff and N. Knoppik, “Microstrip ring resonator anddispersion measurement on microstrip lines,” Electron. Lett.7, 779-781 (1971). https://doi.org/10.1049/el:19710532

Cited by

  1. Optical filter and sensor based on plasmonic-gap-waveguide coupled with T-shaped resonators vol.126, pp.23, 2015, https://doi.org/10.1016/j.ijleo.2015.07.206
  2. Analysis of a bus waveguide with linear ring resonator array coupled plasmonic structure vol.69, pp.1, 2015, https://doi.org/10.1051/epjap/2014140348
  3. A Novel Adjustable Plasmonic Filter Realization by Split Mode Ring Resonators vol.05, pp.12, 2013, https://doi.org/10.4236/jemaa.2013.512063
  4. Polarization-dependent transmission through a bull's eye with an elliptical aperture vol.316, 2014, https://doi.org/10.1016/j.optcom.2013.10.081
  5. Tunable Band-Stop Filters for Graphene Plasmons Based on Periodically Modulated Graphene vol.6, pp.1, 2016, https://doi.org/10.1038/srep26796
  6. Surface plasmon polariton based band-pass and stop-band filters in symmetric double ring resonators vol.60, pp.21, 2013, https://doi.org/10.1080/09500340.2013.865804
  7. Tunable wavelength demultiplexer using modified graphene plasmonic split ring resonators for terahertz communication vol.28, 2018, https://doi.org/10.1016/j.photonics.2017.10.004
  8. Numerical analysis of near-infrared plasmonic filter with high figure of merit based on Fano resonance vol.10, pp.8, 2017, https://doi.org/10.7567/APEX.10.082201
  9. All Optical Logic Gates Based on Two Dimensional Plasmonic Waveguides with Nanodisk Resonators vol.16, pp.4, 2012, https://doi.org/10.3807/JOSK.2012.16.4.432
  10. Investigating the optical NOR gate using plasmonic nanorods vol.29, pp.5, 2016, https://doi.org/10.1002/jnm.2142
  11. Improved Plasmonic Filter, Ultra-Compact Demultiplexer, and Splitter vol.18, pp.3, 2014, https://doi.org/10.3807/JOSK.2014.18.3.261
  12. Plasmonic band-stop filter with asymmetric rectangular ring for WDM networks vol.15, pp.5, 2013, https://doi.org/10.1088/2040-8978/15/5/055007
  13. Development of a small-size embedded optical microfiber coil resonator with high Q vol.61, pp.9, 2012, https://doi.org/10.3938/jkps.61.1381
  14. Investigating the optical nand gate using plasmonic nano-spheres vol.47, pp.11, 2015, https://doi.org/10.1007/s11082-015-0236-9
  15. Investigating the optical XNOR gate using plasmonic nano-rods vol.19, 2016, https://doi.org/10.1016/j.photonics.2016.02.001
  16. Active Focusing of Light in Plasmonic Lens via Kerr Effect vol.16, pp.3, 2012, https://doi.org/10.3807/JOSK.2012.16.3.305
  17. Transmittance spectrum of surface plasmon polariton based filter with asymmetric double-ring resonator and switch vol.61, pp.9, 2014, https://doi.org/10.1080/09500340.2014.909956
  18. All-optical nonlinear plasmonic ring resonator switches vol.61, pp.20, 2014, https://doi.org/10.1080/09500340.2014.951008
  19. Tunable band-stop plasmonic filter based on square ring resonators in a metal-insulator-metal structure vol.64, pp.20, 2017, https://doi.org/10.1080/09500340.2017.1349195
  20. Investigating the optical AND gate using plasmonic nano-spheres vol.15, pp.1, 2016, https://doi.org/10.1007/s10825-015-0747-4
  21. Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity vol.24, pp.9, 2016, https://doi.org/10.1364/OE.24.009975
  22. Design of low-cross-talk metal–insulator–metal plasmonic waveguide intersections based on proposed cross-shaped resonators vol.12, pp.04, 2018, https://doi.org/10.1117/1.JNP.12.046009
  23. Applications of ultracompact aperture-coupled plasmonic slot cavity with spectrally splitting capability vol.12, pp.01, 2018, https://doi.org/10.1117/1.JNP.12.016010
  24. Design of a Single-Mode Plasmonic Bandpass Filter Using a Hexagonal Resonator Coupled to Graded-Stub Waveguides pp.1557-1963, 2018, https://doi.org/10.1007/s11468-018-0777-4