DOI QR코드

DOI QR Code

Optimization of Net Residual Dispersion and Launching Power Depend on Total Transmission Length and Span Length in Optical Transmission Links with Dispersion Management and Optical Phase Conjugation

분산 제어와 광 위상 공액이 적용된 광전송 링크에서 총 전송 거리와 중계 간격에 따른 전체 잉여 분산과 입사 전력의 최적화

  • Lee, Seong-Real (Div. of Marine Electro. and Comm. Eng., Mokpo National Maritime University)
  • Received : 2011.05.19
  • Accepted : 2011.12.05
  • Published : 2011.12.30

Abstract

Design rules of optical transmission links with dispersion management (DM) and optical phase conjugation (OPC) for compensating optical signal distortion due to chromatic dispersion and self phase modulation (SPM) of single mode fiber (SMF) are investigated in this paper. Design rules consist of optimal net residual dispersion (NRD) and optimal range of launching power of wavelength division multiplexed (WDM) channels as a function of total transmission length and span length. In all considered total transmission length and span length, optimal NRD are obtained to +10 ps/nm and -10 ps/mn for transmission links, which is controlled by precompensation and postcompensation, respectively. It is confirmed that system performances are more improved and effective NRD for wide launching power have wider range as total transmission length and span length are more decreased.

단일 모드 광섬유 (SMF; single mode fiber)의 색 분산과 자기 위상 변조 (SPM; self phase modulation)에 의한 신호 왜곡을 보상하기 위하여 분산 제어 (DM; dispersion management)와 광 위상 공액 (OPC; optical phase conjugation)이 적용된 파장 분할 다중 (WDM; wavelength division multiplexed) 시스템에서 전송 링크의 설계 기준을 살펴보았다. 본 연구에서 고려한 전송 링크의 설계 기준은 precompensation과 postcompensation에 의해 결정되는 최적 전체 잉여 분산 (NRD; net residual dispersion)과 채널의 최적 입사 전력 범위이다. 최적 NRD는 WDM 시스템의 전체 전송 거리와 중계 간격에 상관없이 precompensation과 postcompensation에 따라 각각 +10 ps/mn와 -10 ps/mn로 얻어졌다. 그러나 전송 거리와 중계 간격이 짧을수록 시스템 성능이 전반적으로 더욱 양호하게 나타나고, 비교적 넓은 유효 입사 전력 범위에 대해 유효 NRD 범위가 넓게 분포한다는 것을 알 수 있었다.

Keywords

References

  1. J. V. Erps, et. al., "Automatic dispersion compensation for 1.28Tb/s OTDM signal transmission using photonic-chip-based dispersion monitoring", OPTICS EXPRESS, Vol. 18, No. 24, pp. 25415-25421, 2010. https://doi.org/10.1364/OE.18.025415
  2. J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, "Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s signals in PPLN waveguide," Electron. Lett. Vol. , No. 39, pp. 1144-1145, 2003.
  3. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed., Academic Press, 2001.
  4. G. P. Agrawal, Fiber Optic Communication Systems, 3rd ed., John Wiley & Sons, 2003.
  5. J. H. B. Nijhof, N. J. Doran, W. Forgsiak, and A. Berntson, "Energy enhancement of dispersion- managed solitons and WDM," Electron. Lett., Vol. 34, No. 5, pp. 481-482, 1998. https://doi.org/10.1049/el:19980367
  6. X. Xiao, S. Gao, Y. Tian, and C. Yang, "Analytical optimization of the net residual dispersion in SPM-limited dispersion-managed systems," J. Lightwave Technol., Vol. 24, No. 5, pp. 2038-2044, May 2006. https://doi.org/10.1109/JLT.2006.872278
  7. S. Vorbeck, R. Leppla, "Dispersion and Dispersion Slope Tolerance of 160-Gb/s Systems, Considering the Temperature Dependence of Chromatic Dispersion," IEEE Photonics Technol. Lett, Vol. 15, pp. 1470- 1472, 2002.
  8. I. E. Araci1, S. Vorbeck, M. Schneiders, M. J. Ansari, N. Peyghambarian1 and F. Kueppers1 "System optimization and significant reach extension using alternating dispersion compensation for 160 Gbit/s transmission links", Optics Express, Vol. 13, No. 17, pp. 6336-6344, 2005. https://doi.org/10.1364/OPEX.13.006336
  9. Y. Miyamoto, A. Hirano, S. Kuwahara, M. Tomizawa, Y. Tada, "Novel modulation and detection for bandwidth-reduced RZ formats using duobinary-mode splitting in wideband PSK/ASK conversion," IEEE J. Lightwave Technol. Vol. 20, pp. 2067-2078, 2002. https://doi.org/10.1109/JLT.2002.806749
  10. M.I. Hayee, A.E. Willner, "RZ versus RZ in 10-40-Gb/s dispersion-managed WDM transmission systems," IEEE Photonics Technol. Lett. Vol. 11, pp. 991-993, 1999. https://doi.org/10.1109/68.775323
  11. 이성렬, 임황빈, "WDM (24${\times}$40 Gbps) 전송에서 광 위상 공액기와 분산 제어를 이용한 시스템 성능 개선", 한국통신학회논문지, 제 33권 제 10호, pp. 855-864, 2008.
  12. 이성렬, "분산 제어와 OPC를 갖는 광전송 링크를 이용한 WDM 신호의 Q-factor 개선", 한국항행학회논문지, 제 13권 1호, pp. 27-34, 2009.
  13. 이성렬, 임황빈, "분산 제어가 적용된 광전송 링크에서 광 위상 공액의 비대칭성", 한국통신학회논문지, 제 35권 8호, pp. 801-809, 2010.
  14. Seong-Real Lee, "Compensation for the Distorted 16${\times}$40 Gbps NRZ Channels in 1,000 km NZ-DSF WDM System Using MSSI with Optimal Parameters", 한국통신학회논문지, 제 31 권 제 11A호, pp. 1044-1052, 2006.
  15. ITU Recommendation "Spectral grids for WDM applications : DWDM frequency grid" G.694.1, 2006.

Cited by

  1. Improvement of System Performance Through Concentrated RDPS in WDM Transmission Links with Dispersion Management vol.17, pp.4, 2013, https://doi.org/10.6109/jkiice.2013.17.4.971
  2. Dispersion Managed Optical Transmission Links with an Artificial Distribution of the SMF Length and Residual Dispersion per Span vol.12, pp.2, 2014, https://doi.org/10.6109/jicce.2014.12.2.075