DOI QR코드

DOI QR Code

Estimation of Biomass Resource Conversion Factor and Potential Production in Agricultural Sector

농업부문 바이오매스 자원 환산계수 및 잠재발생량 산정

  • Park, Woo-Kyun (National Academy of Agricultural Science, Rural Development Administration) ;
  • Park, Noh-Back (National Academy of Agricultural Science, Rural Development Administration) ;
  • Shin, Joung-Du (National Academy of Agricultural Science, Rural Development Administration) ;
  • Hong, Seung-Gil (National Academy of Agricultural Science, Rural Development Administration) ;
  • Kwon, Soon-Ik (National Academy of Agricultural Science, Rural Development Administration)
  • 박우균 (농촌진흥청 국립농업과학원) ;
  • 박노백 (농촌진흥청 국립농업과학원) ;
  • 신중두 (농촌진흥청 국립농업과학원) ;
  • 홍승길 (농촌진흥청 국립농업과학원) ;
  • 권순익 (농촌진흥청 국립농업과학원)
  • Received : 2011.07.25
  • Accepted : 2011.09.16
  • Published : 2011.09.30

Abstract

BACKGROUND: Currently, national biomass inventory are being established for efficient management of the potential energy sources. Among the various types of biomass, agricultural wastes are considered to take the biggest portion of the total annual biomass generated in Korea, implying its importance. However, the currently estimated amount is not reliable because the old reference data are still used to estimate total annual amount of agricultural wastes. METHODS AND RESULTS: Therefore, to provide reliable estimation data, a correct conversion factor obtained by taking into account the current situation is required. For this, the current study was conducted to provide the conversion factors for each representative 8 crop through a field cultivation study. Also conversion factors for 18 crops were calculated using the average amount of each crop produced during 2004 and 2008, subsequently; total amount of agricultural wastes generated in 2009 was estimated using these conversion factors. The total biomass of rice straw and rice husk generated in 2009 were 6.5 and 1.1 million tons, respectively, which consist 75% of the total agricultural based wastes, while the total biomass of pepper shoots and apple pruning twigs were 1.0 and 0.6 million tons, respectively. Despite the high amount of rice-based biomass, their applicability for bio-energy production is low due to conventional utilization of these materials for animal feeds and beds for animal husbandry. In addition to exact estimation of the total biomass, temporal variations in both generated amount and the type of agricultural biomass materials are also important for efficient utilization; fruit pruning twigs (January to March); barley-, been-, and mustard-related waste materials (April to June); rice-related waste (September to October). CONCLUSION(s): Such information provided in this study can be used to establish a master plan for efficient utilization of the agricultural wastes on purpose of bio-energy production.

국내의 바이오매스 자원조사에 대한 연구에서 농업부산물의 경우 잠재 이용량이 가장 높은 부분임에도 불구하고 과거 자료를 근거로 인용되어 잠재발생량이 산출되고 있다. 따라서 국가 단위의 바이오매스 인벤토리의 구축이 요구되고 신뢰도와 재현성이 높은 바이오매스 환산계수 개발을 통해 효과적인 자원관리가 이루어져야 한다. 본 연구에서 포장시험을 통해 산정된 8종류의 농작물의 바이오매스 환산계수를 산정하였고, 2004~2008년 평균 곡물 총 생산량을 기준으로 농작물 18종의 바이오매스 환산계수를 산정하여 2009년 농업 유래 바이오매스 잠재 발생량을 추정하였다. 그 결과 농작물에서 발생되는 바이오매스량은 연간 약 11,600 천톤이었고, 이 중 볏짚의 발생량이 연간 약 6,507 천톤, 왕겨 1,140 천톤으로 농업부문에서 약 75%를 차지하였으며, 고추 줄기가 1,003 천으로 약 10%를 차지하였고, 사과 전정가지가 약 6%인 620천톤 정도가 발생되는 것으로 추정되었다. 그러나 볏짚과 왕겨의 경우 기존에 가축 사료나 축사 깔짚 등으로 재이용되고 있기 때문에 실제 바이오매스 에너지원으로의 활용 측면은 낮을 것으로 예상된다. 또한, 농업부산물의 에너지화를 위해서 잠재 발생량의 정확한 산정도 필요하지만 농업부산물의 특성상 시기별 발생량과 종류가 달라지기 때문에 계절 등에 따른 바이오매스 발생특성을 고려해야 한다. 과수 전정가지 등 과수 부산물의 경우 1~3월 사이에 발생이 집중되는 것으로 나타났고, 맥류와 서류 및 유채 등이 4~6월에 발생되었으며, 미곡 등 다른 부산물의 9, 10월에 집중하여 발생되는 것으로 나타났다. 따라서 농촌지역 바이오매스의 효율적인 이용을 위해서는 바이오매스의 연중 안정된 수급 및 보급 가능한 이용체계 확립이 우선되어야 할 것으로 사료된다.

Keywords

References

  1. Elmore, A.J., Shi, X., Gorence, N.J., Li, X., Jin, H., Wang, F. and Zhang, X., 2007. Spatial distribution of agricultural residue from rice for potential biofuel production in China, Biomass Bioenerg. Available online 6 August.
  2. Fischer, G., 2004. Biomass potentials of miscanthus, willow and poplar : results and policy implications for Eastern Europe, Northern and Central Asia, Biomass Bioenerg. 28(2), 119-132.
  3. Hong, S.G., 2004. Evaluation of agricultural biomass resource for renewable energy : biomass from orchards and non-paddy fields, J. Korean Soc. Agr. Eng. 46(3), 85-92.
  4. Kim, G.Y., Ko, B.G., Jeong, H.C., Roh, K.A., Shim, K.M., Lee, J.T., Lee, D.B., Hong, S.Y. and Kwon, S.I., 2009. Estimating carbon fixation of 14 crops in korea, Korean J. Soil Sci. Fert. 42(6), 460-466.
  5. Kim, Y.H., Nam, J.J., Hong, S.Y., Choe, E.Y., Hong, S.G. and So, K.H., 2009. Establishment of database and distribution maps for biomass resources, Korean J. Soil Sci. Fert. 42(2), 379-384.
  6. Lee, J.P., Hwang, K.R. and Park, S.C., 2008. Estimation method of potential biomass resources in korea, Korean J. Sol. Energ. Soc. 332-336.
  7. Son, Y.M., Lee, K.H. and Kim, R.H., 2007. Estimation of forest biomass in Korea, J. Korean For. Soc. 4, 477-482.
  8. Walsh, M.E., 1998, Bioenergy crop economic analysis : status and needs, Biomass Bioenerg. 14(4), 341-350. https://doi.org/10.1016/S0961-9534(97)10070-8
  9. Yook, H.Y. and Lee, M.G., 2009. A study on biomass utilization strategies of Hokkaido prefecture in Japan, Korea J. Org. Res. Recycling Associ. 17(2), 37-50.
  10. Donald, C.M. and Hamblin, J., 1976. The biological yield and harvest index of cereals as agronomic and plant breeding criteria, Adv. Agron., 28, 361-405. https://doi.org/10.1016/S0065-2113(08)60559-3

Cited by

  1. Effect of the Application of Carbonized Biomass from Crop Residues on Soil Chemical Properties and Carbon Pools vol.48, pp.5, 2015, https://doi.org/10.7745/KJSSF.2015.48.5.549
  2. Effect of Carbonized Biomass Application on Organic Carbon Accumulation and Soy Bean Yields in Upland Soil vol.49, pp.1, 2016, https://doi.org/10.7745/KJSSF.2016.49.1.001
  3. Effect of Carbonized Rice Hull Application on Increasing Soil Carbon Storage and Mitigating Greenhouse Gas Emissions during Chinese Cabbage Cultivation vol.49, pp.2, 2016, https://doi.org/10.7745/KJSSF.2016.49.2.181
  4. Effect of the Application of Carbonized Biomass from Crop Residues on Soil Organic Carbon Retention vol.47, pp.6, 2014, https://doi.org/10.7745/KJSSF.2014.47.6.486
  5. Lignan and flavonoids from the stems of Zea mays and their anti-inflammatory and neuroprotective activities vol.38, pp.2, 2015, https://doi.org/10.1007/s12272-014-0387-4
  6. Co-Gasification of Woodchip and Plastic Waste for Producing Fuel Gas vol.54, pp.3, 2012, https://doi.org/10.5389/KSAE.2012.54.3.075
  7. Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil vol.74, pp.2, 2015, https://doi.org/10.1007/s12665-015-4116-1
  8. Phenolic compounds from the stems of Zea mays and their pharmacological activity vol.57, pp.3, 2014, https://doi.org/10.1007/s13765-014-4104-2
  9. Physiochemical Characteristics for Bale Types and Storage Periods of Agricultural By-products as a Lignocellulosic Biomass vol.58, pp.3, 2013, https://doi.org/10.7740/kjcs.2013.58.3.324
  10. Amelioration of Horticultural Growing Media Properties Through Rice Hull Biochar Incorporation vol.8, pp.2, 2017, https://doi.org/10.1007/s12649-016-9588-z
  11. Decreases Nitrous Oxide Emission and Increase Soil Carbon via Carbonized Biomass Application of Orchard Soil vol.36, pp.2, 2017, https://doi.org/10.5338/KJEA.2017.36.2.13
  12. Effect of Carbonized Biomass Derived from Pruning on Soil Carbon Pools in Pear Orchard vol.35, pp.3, 2016, https://doi.org/10.5338/KJEA.2016.35.3.26
  13. Investigation on Regional Distribution of Potential Energy Production with Agricultural By-Products in Agricultural Sector vol.46, pp.5, 2013, https://doi.org/10.7745/KJSSF.2013.46.5.343
  14. Effects of Biomass Application on Soil Carbon Storage and Mitigation of GHGs Emission in Upland vol.48, pp.5, 2015, https://doi.org/10.7745/KJSSF.2015.48.5.340
  15. Estimation of Biomass Resources Potential vol.36, pp.1, 2016, https://doi.org/10.7836/kses.2016.36.1.019
  16. Crude oil production and classification of organic compounds on super-critical liquefaction with rice hull vol.18, pp.5, 2013, https://doi.org/10.1007/s12257-013-0122-x