DOI QR코드

DOI QR Code

Production of Transgenic Plants in Brassica napus Winter Cultivar 'Youngsan'

영산 유채를 이용한 형질전환체 생산

  • Roh, Kyung-Hee (Department of Agricultural Biotechnology, National Academy of Agricultural Science, RDA) ;
  • Kwak, Bo-Kyoung (Department of Agricultural Biotechnology, National Academy of Agricultural Science, RDA) ;
  • Kim, Hyun-Uk (Department of Agricultural Biotechnology, National Academy of Agricultural Science, RDA) ;
  • Lee, Kyeong-Ryeol (Department of Agricultural Biotechnology, National Academy of Agricultural Science, RDA) ;
  • Kim, Sun-Hee (Department of Agricultural Biotechnology, National Academy of Agricultural Science, RDA) ;
  • Suh, Mi-Chung (Department of Bioenergy Science & Technology, Chonnam National University) ;
  • Kim, Hyo-Jin (Department of Bioenergy Science & Technology, Chonnam National University) ;
  • Kim, Jong-Beom (Department of Agricultural Biotechnology, National Academy of Agricultural Science, RDA)
  • 노경희 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 곽보경 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 김현욱 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 이경렬 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 김순희 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 서미정 (전남대학교 바이오에너지공학과) ;
  • 김효진 (전남대학교 바이오에너지공학과) ;
  • 김종범 (농촌진흥청 국립농업과학원 농업생명자원부)
  • Received : 2011.01.27
  • Accepted : 2011.03.07
  • Published : 2011.03.31

Abstract

To improve genetic transformation of Brassica napus winter cultivar 'Youngsan', factors influencing shoot regeneration and transformation from cotyledonary petioles were investigated. Shoot induction was enhanced in the combination of 0.5 mg/L NAA and 2~4 mg/L kinetin. Silver nitrate was essential for successful shoot regeneration, ranging from 5 to 9 mg/L. The addition of $GA_3$ promoted plant regeneration. Among the tested Agrobacterium strains, co-cultivation times, and antibiotic selection regimes, choice of appropriate Agrobacterium strain was the most critical factor for efficient transformation of B. napus cv. 'Youngsan'. The EHA105 succinamopine strain was the most efficient and the maximum transformation efficiency was 26.8%. Transgenic shoots were selected on 10 mg/L phosphinothricin (PPT) containing media. The transgenic plants expressing bar and gus genes were resistant for commercial herbicide "Basta" and stained with X-Gluc. Southern blot hybridization indicated that the presence of one to three gus gene copies per genome and inheritance of the gus gene into the $T_1$ generation.

국내 육성 추파 품종인 '영산' 유채의 자엽 부착 잎자루 부위를 이용하여 재분화와 형질전환의 효율 증진에 영향을 주는 요인을 살펴보았다. 줄기 형성율은 NAA 0.5 mg/L와 Kinetin 2~4mg/L가 혼용 첨가된 배지에서 61~71%로 가장 양호하였다. 또한 질산은(Silver nitrate) 5~9 mg/L 첨가는 재분화에 필수적이었고, $GA_3$ 0.01 mg/L 첨가는 재분화에 긍정적인 영향을 주는 것으로 관찰되었다. 아그로박테리움의 Strain 종류, 공동배양 시간, 그리고 형질전환체 초기 선발시 항생제 농도 조절(저${\rightarrow}$고농도)에 따른 '영산' 유채의 형질전환 효율을 살펴본 결과, 아그로박테리움의 Strain 선정이 가장 중요한 요인으로 조사되었다. 특히, EHA105 succinamopine strain을 사용하였을 때 형질전환 효율이 26.8%로 가장 효과적이었다. Bar 유전자와 GUS 유전자가 내재된 형질전환체는 제초제 '바스타' 살포시 생존하고, X-Gluc으로 염색되었다. 그리고 Southern 분석을 통해 후대로 유전자가 안정적으로 유전됨을 확인하였다.

Keywords

References

  1. Babic V, Datla RS, Scoles GJ, and Keller WA (1998) Development of an efficient Agrobacterium-mediated transformation system for Brassica carinata. Plant Cell Rep 17, 183-188. https://doi.org/10.1007/s002990050375
  2. Bhalla PL and Singh MB (2008) Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nat Protocol 3, 181-189. https://doi.org/10.1038/nprot.2007.527
  3. Cardoza V and Stewart CN (2003) Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyls segment explants. Plant Cell Rep 21, 599-604.
  4. Chang CC and Schmidt DR (1991) Initiation and proliferation of carrot callus using a combination of antibiotics. Planta 185, 523-526.
  5. Chi GL, Barfield DG, Sim GE, and Pua EC (1990) Effect of $AgNO_3$ and aminoethoxyvinylglycine on in vitro shoot and root organogenesis from seedling explants of recalcitrant Brassica genotypes. Plant Cell Rep 9, 195-198.
  6. Damgaard O, Jensen LH, and Rasmussen OS (1997) Agrobacterium tumefaciens-mediated transformation of Brassica napus winter cultivars. Transgenic Res 6, 279-288. https://doi.org/10.1023/A:1018458628218
  7. De Block M, De Brouwer D, and Tenning P (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol 91, 694-704. https://doi.org/10.1104/pp.91.2.694
  8. Fry J, Barnason A, and Horsch RB (1987) Transformation of Brassica napus with Agrobacterium tumefaciens based vectors. Plant Cell Rep 6, 321-325. https://doi.org/10.1007/BF00269550
  9. Hoekema A, Hirsch PR, Hooykaas PJJ, and Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and Tregion of the Agrobacterium tumefaciens Ti-plasmid. Nature 303, 179-180.
  10. Hood EE, Gelvin SB, Melchers LS, and Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2, 208-218. https://doi.org/10.1007/BF01977351
  11. Jefferson RA (1987) Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol Bio Rep 5, 387-405. https://doi.org/10.1007/BF02667740
  12. Kamal GB, Illich KG, and Asadollah A (2007) Effects of genotype, explants type and nutrient medium components on canola (Brassica napus L.) shoot in vitro organogenesis. African J Biotechnol 6, 861-867.
  13. Kim H, Lee H, Go YS, Roh KH, Lee YH, Jang YS, and Suh MC (2010) Development of herbicide-tolerant Korean rapeseed (Brassica napus L.) cultivars. J Plant Biotechnol 37, 319-326. https://doi.org/10.5010/JPB.2010.37.3.319
  14. Koncz C and Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204, 383-396. https://doi.org/10.1007/BF00331014
  15. Moloney MM, Walker JM, and Sharma KK (1989) High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep 8, 238-242. https://doi.org/10.1007/BF00778542
  16. Munir M, Rashid H, Chaudhry Z, and Bukhari MS (2008) Callus formation and plantlets regeneration from hypocotyls of Brassica napus by using different media combinations. Pak J Bot 40, 309-315.
  17. Murashige T and Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15, 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  18. Narasimhulu SB and Chopra VL (1988) Species specific shoot regeneration response of cotyledonary explants of Brassicas. Plant Cell Rep 7, 104-106. https://doi.org/10.1007/BF00270115
  19. Poulsen GB (1996) Genetic transformation of Brassica. Plant Breeding 115, 209-225. https://doi.org/10.1111/j.1439-0523.1996.tb00907.x
  20. Roh KY, Lee KJ, Park JS, Kim JB, Lee SB, and Suh SC (2010) Effect of cultivar and ascorbic acid on in vitro shoot regeneration and development of bombardment-mediated plastid transformation of tomato (Lycopersicon esculentum). J Plant Biotechnol 37, 77-83. https://doi.org/10.5010/JPB.2010.37.1.077
  21. Schreuder MM, Raemakers CJJM, Jacobsen E, and Visser RGF (2001) Efficient production of transgenic plants by Agrobacteriummediated transformation of cassava (Manihot esculenta Crantz). Euphytica 120, 35-42. https://doi.org/10.1023/A:1017530932536
  22. Voelker TA, Hayes TR, Cranmer AM, Turner JC, and Davies HM (1996) Genetic engineering of a quantitative trait: metabolic and genetic parameters influencing the accumulation of laurate in rapeseed. The Plant J 9, 229-241. https://doi.org/10.1046/j.1365-313X.1996.09020229.x
  23. Williams J, Pink DAC, and Biddington NL (1990) Effect of silver nitrate on long-term culture and regeneration of callus from Brassica oleracea var. gemmifera. Plant Cell Tiss Org 21, 61-66. https://doi.org/10.1007/BF00034493
  24. Zhang FL, Takahata Y, and Xu JB (1998) Medium and genotype factors influencing shoot regeneration from cotyledonary explants of Chinese cabbage (Brassica campestris L. ssp. pekinensis) (1998) Plant Cell Rep 17, 780-786. https://doi.org/10.1007/s002990050482

Cited by

  1. Gene Expression Profiling of Oilseed Rape Embryos Using Microarray Analysis vol.55, pp.4, 2012, https://doi.org/10.3839/jabc.2012.036
  2. Effects of different types and ages of explants and cytokinins on shoot regeneration in Brassica juncea L. vol.40, pp.2, 2013, https://doi.org/10.5010/JPB.2013.40.2.072
  3. ) from Barley Enhances Cold Tolerance in Transgenic rapeseed plants vol.58, pp.4, 2015, https://doi.org/10.3839/jabc.2015.051
  4. Expression of Arabidopsis thaliana Thioredoxin-h2 in Brassica napus enhances antioxidant defenses and improves salt tolerance vol.147, pp.None, 2011, https://doi.org/10.1016/j.plaphy.2019.12.032