DOI QR코드

DOI QR Code

Probabilistic Analysis of Independent Storm Events: 2. Return Periods of Storm Events

독립호우사상의 확률론적 해석 : 2. 호우사상의 재현기간

  • Received : 2011.02.09
  • Accepted : 2011.03.04
  • Published : 2011.04.30

Abstract

In this study, annual maximum storm events are evaluated by applying the bivariate extremal distribution. Rainfall quantiles of probabilistic storm event are calculated using OR case joint return period, AND case joint return period and interval conditional joint return period. The difference between each of three joint return periods was explained by the quadrant which shows probability calculation concept in the bivariate frequency analysis. Rainfall quantiles under AND case joint return periods are similar to rainfall depths in the univariate frequency analysis. The probabilistic storm events overcome the primary limitation of conventional univariate frequency analysis. The application of these storm event analysis provides a simple, statistically efficient means of characterizing frequency of extreme storm event.

본 연구에서는 이변량 극치분포를 이용하여 연최대치 호우사상을 평가하였다. 이를 위해 특정 재현기간을 가지는 호우사상의 강우량을 비동시결합 재현기간, 동시결합 재현기간 그리고 구간조건부 결합재현기간의 세 가지를 이용하여 산정하였다. 이때, 결합재현기간별 호우사상의 값의 크기가 서로 다르게 산정되는 이유를 이변량 분포의 확률특성을 보여주는 사분면을 이용하여 설명하였다. 호우지속기간 24시간인 경우에 동시결합재현기간을 이용하여 산정한 확률강우량은 전통적인 방법으로 얻어진 강우지속기간 24시간의 확률강우량과 유사하게 나타났다. 이러한 결과는 전통적인 강우빈도해석의 제약사항을 극복하는데 도움이 될 것으로 보여진다. 이변량 빈도해석으로 얻어진 확률호우사상은 저류시설물의 계획시 통계적으로 보다 유용하면서도 간단한 설계 호우사상을 제공할 수 있을 것으로 보여진다.

Keywords

References

  1. 박민규, 유철상 (2011) 독립호우사상의 확률론적 해석: 1. 연최대호우사상 계열의 작성, 한국방재학회논문집, 제11권, 2호, pp. 127-136.
  2. 윤용남 (2007) 수문학, 청문각
  3. 한국건설기술연구원 (2000) 1999년도 수자원관리기법개발연구조사 보고서 제1권 한국 확률강우량도 작성, 건설교통부, pp. 192.
  4. Adams. B.J. and Papa, F. (2000) Urban Stormwater Management Planning with Analytical Probabilistic Models, John Wiley & Sons, INC., pp. 55-68.
  5. Akan, A.O. and Houghtalen, R.J. (2003). Urban Hydrology, Hydraulics, and Stormwater Quality - Engineering Applications and Computer Modeling, John Wiley & Sons, INC., pp. 246-249.
  6. Box G.E.P. and Cox D. (1994). An analysis of transformation (with discussion), Journal of the Royal Statistical Society Series B, 26, pp. 211-246.
  7. Coles, S. and Tawn, JA. (1991) Modelling extreme multivariate events, Journal of the Royal Statistical Society Series B, 53(2), pp. 377-392.
  8. United States Environmental Protection Agency (1986) Methodology for Analysis of Detention Basins for Control of urban runoff quality.
  9. Galambos, J. (1987) The asymptotic theory of extreme order statistics, Malabar, Florida: Kreiger.
  10. Goel, N.K., Seth, S.M. and Chandra, S. (1998) Multivariate modeling of flood flows, Journal of Hydraulic Engineering, 124(2), pp. 146-155. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:2(146)
  11. Gumbel, E.J. (1958). Statistics of extremes. Columbia University Press, pp. 156-305.
  12. Gumbel, E.J. (1960) Bivariate exponential distributions, Journal of the American Statistical Association, 55, pp. 698-707. https://doi.org/10.1080/01621459.1960.10483368
  13. Gumbel, E.J. (1965) Two systems of bivariate extremal distribution, 35th session of the international statistical institute, Beograd, No. 39.
  14. Haan, C.T. (2002). Statistical Methods in Hydrology, 2nd ed. Iowa State Press.
  15. Joe, H. (1996) Multivariate models and dependence concepts, London: Chapman & Hall.
  16. Kotz, S., Balakrishnan, N. and Johnson. N.L. (2000) Continuous Multivariate Distributions Volume 1: Models and Applications. John Wiley & Sons, INC., pp. 350-362.
  17. Oliveira, J. (1958) Extremal distributions, Revista da Faculdade de Ciencias, Lisboa, Series A, 7, 215-227.
  18. Oliveira, J. (1961) La representation des distribution extremes bivariees, Bulletin of the International Statistical Institute, 33, 477-480.
  19. Palynchuk, B. and Guo, Y. (2008) Threshold analysis of rainstorm depth and duration statistics at Toronto, Canada, Journal of Hydrology, Vol. 348, pp. 535-545. https://doi.org/10.1016/j.jhydrol.2007.10.023
  20. Rao, A.R. and Hamed, K.H. (2000) Flood Frequency Analysis. CRC press. pp. 227-228.
  21. Smith, R. L. (1990) Extreme value theory, Handbook of Applicable Mathematics, 7, pp. 437-472, New York: John Wiley & Sons.
  22. Tawn, J.A. (1988) Bivariate extreme value theory: models and estimation, Biometrica, 75(3), pp. 397-415. https://doi.org/10.1093/biomet/75.3.397
  23. Tawn, J.A. (1990) Modelling multivariate extreme value distribution, Biometrica, 77(2), pp. 245-253. https://doi.org/10.1093/biomet/77.2.245
  24. Zhang, L and Singh, V.P. (2007) Bivariate rainfall frequency distributions using Archimedean copulas, Journal of Hydrology, Vol. 332(1-2), pp. 93-109. https://doi.org/10.1016/j.jhydrol.2006.06.033
  25. Yue, S., Ouarda TBMJ, bobe B, Gegendre P, and Bruneau P. (1999) The Gumbel mixed model, Journal of Hydrology, 226(1-2), pp. 88-100. https://doi.org/10.1016/S0022-1694(99)00168-7
  26. Yue, S. (2000) Joint probability distribution of annual maximum storm peaks and amounts as represented by daily rainfalls, Hydrological Sciences Journal, 45(2), pp. 315-326. https://doi.org/10.1080/02626660009492327
  27. Yue, S. (2001) The Gumbel logistic model for representing a multivariate storm event, Advances in Water Resources, 24(2), pp. 179-185.
  28. Yue, S. and Rasmussen, P. (2002) Bivariate frequency analysis: discussion of some useful concepts in hydrological application, Hydrological Processes, 16, pp. 2881-2898. https://doi.org/10.1002/hyp.1185
  29. Yue, S. and Wang, CY. (2004) A comparison of two bivariate extreme value distribution, Stochastic Environmental Research and Risk Assessment, 18(2), pp. 61-66. https://doi.org/10.1007/s00477-003-0124-x