Effects of Seed Size on the Rate of Germination, Early Growth and Winter Survival in Four Oaks Species

종자크기에 따른 참나무 4종의 발아율, 초기 생장율과 생존율 변화

  • 신정훈 (공주대학교 대학원 생물학과) ;
  • 유영한 (공주대학교 대학원 생물학과)
  • Received : 2011.08.30
  • Accepted : 2011.10.28
  • Published : 2011.11.30

Abstract

In order to know the effect of seed size on the early plant life history, we measured the rate of germination, early growth and winter survival of four oak species with different acorn size (large, medium and small). The mean germination rate was higher in the larger seed species ($Q.$ $acutissima$ and ($Q.$ $variabilis$) than those of the smaller seed species ($Q.$ $aliena$ and $Q.$ $serrata$). Within $Q.$ $variabilis$, the germination rate decreased with larger acorn size class but that of rest other species was not significantly affected by the acorn size. The early mean growth rate decreased with acorn size in the order of $Q.$ $acutissima$, $Q.$ $variabilis$, $Q.$ $aliena$ and $Q.$ $serrata$. The early mean growth rate was higher in large or medium size than in small size of $Q.$ $acutissima$ and $Q.$ $variabilis$, but it showed no difference with acorn size in $Q.$ $aliena$ and $Q.$ $serrata$. Survival rate in winter was the highest in the medium acorn size among 4 oak species, the seedling of $Q.$ $serrata$ and $Q.$ $variabilis$ did not survive in both large and small acorn size. These results indicate that seed size influences a different effect on the early plant life history stage.

식물의 초기 생활사가 종자크기에 따라 어떤 영향을 받는지를 알아보기 위하여 우리나라 산림군락에서 상수리나무, 굴참나무, 갈참나무, 졸참나무 참나무 4종의 열매를 3등급의 크기(대, 중, 소)로 구분하고, 그에 따른 4종의 발아율, 겨울철 생존율과 초기 생장율을 측정하였다. 평균 발아율은 종자가 큰 상수리나무와 굴참나무에서 높았고, 상대적으로 크기가 작은 갈참나무와 졸참나무에서 낮았다. 그러나 종 내 종자크기에 따른 발아율은 굴참나무에서만 종자가 작을수록 높았고, 나머지 3종은 종자크기에 따른 경향성이 없었다. 평균 초기 생장율은 종자크기에 비례하여 상수리나무, 굴참나무>갈참나무>졸참나무 순으로 낮았다. 초기 생장율은 상수리나무와 굴참나무에서 종자가 크거나 중간인 것이 작은 것보다 높았으나, 종자가 작은 갈참나무와 졸참나무 내에서는 종자크기에 따른 차이는 없었다. 겨울 동안의 생존율은 4종 모두 중간 크기의 종자에서 가장 높았으나, 졸참나무나 굴참나무는 작거나 큰 종자에서는 전혀 생존하지 않았다. 결론적으로 발아와 초기 생장에는 큰 종자가, 생존에는 중간크기 종자가 각각 유리하였다. 이것은 종자의 크기가 식물의 생활사에 미치는 영향은 생장단계에 따라 서로 다름을 의미한다.

Keywords

References

  1. 김지문, 권기원, 문홍규, 박홍준. 1984. 수분 및 시비처리에 따른 참나무 실생묘의 생육반응. 충남대학교 농업과학연구소 연구보고. 11:207-217.
  2. 김해란, 정헌모, 김혜주, 유영한. 2008. 상수리나무와 굴참나무의 생태적 지위에 관한 연구. 환경생물. 26:385-391.
  3. 문국이. 2007. 수박종자의 크기가 묘의 소질 및 수량에 미치는 영향. 진주산업대학교 산업대학원 원예학과. pp. 1-5.
  4. 변무섭. 2000. 광도와 토양수분 구배에 따른 참나무류 치수의 발아 및 성장. 한국농림기상학회지. 2:183-189.
  5. 송호경, 장규관, 김성덕. 1995. TWINSPAN과 DCCA에 의한 신갈나무 군집과 환경의 상관관계 분석. 한국임학회지. 84:299-305.
  6. 신만용, 임주훈, 전영우, 고영주. 1992 신갈나무-잣나무 천연혼효림분의 갱신 및 무육방법. 한국임학회지. 81:21-29.
  7. 이경준. 1995. 수목생리학. 서울대학교출판부.
  8. 이창복. 1961a. 한국산 참나무류의 계통학적 연구(1). 서울대학교 논문집. 10:87-108.
  9. 이창복. 1961b. 한국산 참나무류의 계통학적 연구(2). 서울대학교 논문집. 10:97-141.
  10. 이창복. 2003. 원색 대한식물도감. 향문사. pp. 910.
  11. 이호종, 유영한. 2009. 세 가지 환경구배에 따른 신갈나무의 생태적 지위폭과 상수리나무, 굴참나무와의 생태적 중복역. 환경생물. 27:191-197.
  12. 임업연구원. 1988. 참나무자원의 종합이용에 관한 연구(I). 과학기술처. pp.226.
  13. 임업연구원. 1989. 참나무자원의 종합이용에 관한 연구(II). 과학기술처. pp.307.
  14. 임업연구원. 1990. 참나무자원의 종합이용에 관한 연구(III). 과학기술처. pp.449.
  15. 전병삼, 강진호, 윤수영, 이상우, 정종일. 2003. 안동대목 종자의 크기와 등숙 정도에 따른 발아, 유묘 출현 및 생장. Korean Journal of Crop Science 48:152-155.
  16. 정중규, 김해란, 유영한. 2010. 지구온난화에 따른 상수리나무와 굴참나무의 생육반응에 관한 연구. 한국환경생태학회지. 24:648-656.
  17. 정태현, 이우철. 1965. 한국삼림 식물대 및 적지적수론. 성균관대학교 논문집. 10:329-366.
  18. 정헌모, 김해란, 유영한. 2009. 환경구배처리에 따른 상수리나무, 굴참나무와 신갈나무의 생육 차이. 환경생물. 27:82-87.
  19. 홍용식, 유영한, 이훈복. 2010. 한국산 참나무류 6종의 주요영양염류 농도의 계절적 변화, 한국환경생태학회지. 24:286-292.
  20. Bonfil C. 1998 The effects of seed size, cotyledon reserves, and herbivory on seedling survival and growth in Quercus rugosa and Q. laurina. American Journal of Botany 85:79. https://doi.org/10.2307/2446557
  21. Givnish TJ. 1988. Adaptation to sun and shade : A whole-plant perspective. Aust Journal of Plant Physiology 15:63-92. https://doi.org/10.1071/PP9880063
  22. Gomez JM. 2004. Bigger is not always better : conflicting selective pressures on seed size in Quercus ilex. Evolution 58:71-80.
  23. Harper JL, Lovell PH and Moore KG. 1970. The shapes and sizes of seeds. Ecology System 1:327-356. https://doi.org/10.1146/annurev.es.01.110170.001551
  24. He Js, Flynn DFB, Wolfe-Bellin K, Fang J and Bazzaz FA. 2005. Co2 and nitrogen, but not population density, alter the size and C/N ratio of phytolacca americana seeds. Functional Ecology 19:437-444. https://doi.org/10.1111/j.1365-2435.2005.00981.x
  25. Kanazawa Y. 1975. Production, dispersal and germination of acorns in natural stands of Quercus crispula. Journal of the Japanese Forest 57:209-214.
  26. Ke G and Werger M JA. 1999. Different responses to shade of evergreen and deciduous oak seedlings and the effect of acorn size. Acta Oecologica 20:579-586. https://doi.org/10.1016/S1146-609X(99)00103-4
  27. Kenji S. 2000. Effects of seed size and emergence time on tree seedling establishment : importance of developmental constraints. Oecologia 123:208-215. https://doi.org/10.1007/s004420051007
  28. Kenji S and Kihachiro K. 1991. Phenology of tree seedlings in relation to seed size. Canada Journal of Biotechnology 69:532-538.
  29. Krebs CJ. 2009. Ecology sixth edition. Benjamin cummings. p. 59.
  30. Leishman MR and Westoby M. 1994. The role of large seed size in shaded conditions : experimental evidence. Functional Ecology 8:205-21. https://doi.org/10.2307/2389903
  31. Leishman MR, Wright LJ, Moles AT and Westoby M. 2000. The evolutionary ecology of seed size. CAB international. pp. 31-59.
  32. Long TJ and Jones RH. 1996. Seedling growth strategies and seed size effects in fourteeen oak species native to different soil moisture habitats. Trees 11:1-8. https://doi.org/10.1007/s004680050051
  33. Mccomb AL. 1934. The relation between acorn weight and the development of one year chestnut oak seedlings. Journal of Forestry 32:479-484.
  34. Metcalfe DJ and Grubb PJ. 1995. Seed mass and light requirements for regeneration in Southeast Asian rain forest. Botany 73:817. https://doi.org/10.1139/b95-090
  35. Milberg P, Ferez-fernandez MA and Lamont BB. 1998. Seedling growth response to added nutrients depends on seed size in three woody genera. Journal of Ecology 86:624-632. https://doi.org/10.1046/j.1365-2745.1998.00283.x
  36. Noh HC and Jeong HY. 2002. Statistica. Hyungseul. pp. 628.
  37. Stanton ML. 1984. Seed variation in wild radish : effect of seed size on componets of seedling and adult fitness. Ecology 65:1105-1112. https://doi.org/10.2307/1938318
  38. Stanton ML. 1985. Seed size and emergence time within a stand of wild radish (RaPHanus raphanistrum L.) : establishment of a fitness hierarchy. Oecologia 67:524-531. https://doi.org/10.1007/BF00790024
  39. Westoby M, jurado E and Leishman M. 1992. Comparative evolutionary ecology of seed size. Trends Ecology 7:368-372. https://doi.org/10.1016/0169-5347(92)90006-W
  40. Wulff RD. 1986. Seed size variation in desmodium paniculatum, II. Effects on seedling growth and physiological performance. The Journal of Ecology 74:99-114. https://doi.org/10.2307/2260351
  41. Xiao Z, Zhang Z and Wang Y. 2004. Dispersal and germination of big and small nuts of Quercus serrata in a subtropical broad-leaved evergreen forest. Forest Ecology and Management 195:141-150. https://doi.org/10.1016/j.foreco.2004.02.041