DOI QR코드

DOI QR Code

Comparision of Mineral, Hydroxy Methyl Furfural Content and SDS-PAGE Pattern of Proteins in Different Honeys

다양한 꿀에 함유된 무기물 조성, Hydroxy Methyl Furfural 함량 및 꿀 단백질의 전기영동 패턴 비교

  • Jung, Mi-Ea (Department of Food Science and Technology, Graduate School of Agriculture and Animal Science, Konkuk University) ;
  • Kim, Cheon-Jei (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Paik, Hyun-Dong (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Oh, Jae-Wook (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Lee, Si-Kyung (Department of Food Science and Technology, Graduate School of Agriculture and Animal Science, Konkuk University)
  • 정미애 (건국대학교 농축대학원 식품공학과) ;
  • 김천제 (축산식품생물공학과) ;
  • 백현동 (축산식품생물공학과) ;
  • 오재욱 (축산식품생물공학과) ;
  • 이시경 (건국대학교 농축대학원 식품공학과)
  • Received : 2010.10.18
  • Accepted : 2011.02.09
  • Published : 2011.04.30

Abstract

This study was conducted to analyze ash content, mineral composition, hydroxy methyl furfural (HMF) content, stable carbon isotope ratio, and SDS-polyacrylamide gel electrophoresis patterns to investigate the quality characteristics of various honeys harvested from different sources and to identify differences useful for distinguishing honey sources. Ash content was 0.046-0.012% in acacia honey, 0.565-1.318% in chestnut honey, 0.06-0.582% in polyfloral honey, and 0.237-0.893% in native bee honey. Potassium content was high in order of chestnut honey>native bee honey>polyfloral honey>acacia honey. The Na/K ratio was 0.92-1.97 in acacia honey, 0.02-1.59 in chestnut honey, 0.02-5.30 in polyfloral honey, and 0.22-0.51 in native bee honey. The HMF content was 9.60-12.85, 10.15-25.75, 9.7-33.5, and 6.25-21.5 mg/kg in acacia, chestnut, native bee, and polyfloral honeys, respectively. HMF content was the highest in native bee honey. A 59 kDa protein band was revealed in all samples by SDS-PAGE analysis. Protein bands of 32.1, 31.9, and 33.5 kDa were revealed in some chestnut honeys, and protein bands of 32.3 and 32.5 kDa were shown in native bee honeys. A protein band of 72 kDa was also confirmed in some chestnut honeys.

밀원을 달리한 다양한 꿀의 특성을 조사하기 위하여 아카시아꿀 7개, 잡화꿀 9개, 밤꿀 5개, 토종꿀 5개의 시료를 이용하여, 회분 함량, 무기물 조성과 HMF(hydroxy methyl furfural)함량 및 꿀 단백질의 SDS-PAGE에 의한 단백질 분자량을 조사한 결과는 다음과 같다. 회분 함량은 아카시아꿀이 0.046-0.119%이었으며, 밤꿀은 0.565-1.318%, 잡화꿀 0.06-0.582%, 토종꿀 0.237-0.893% 이었다. 무기물 분석에서 K함량은 밤꿀>토종꿀>잡화꿀>아카시아꿀 순으로 높았으며, Ca함량은 아카시아꿀과 잡화꿀에서 가장 높았다. 아카시아꿀의 Na/K ratio는 0.92-1.97, 밤꿀은 0.02-1.59, 잡화꿀은 0.02-5.30, 토종꿀은 0.22-0.51이었다. 또한 HMF 함량은 밀원의 종류에 관계없이 다양하게 나타나, 아카시아꿀이 9.60-12.85 mg/kg, 밤꿀은 10.15-25.75 mg/kg, 토종꿀은 9.7-33.5 mg/kg, 잡화꿀은 6.25-21.5 mg/kg 이었으며, 토종꿀에서 가장 높았다. SDS-PAGE에 의한 단백질 band의 분자량 분석에서 양봉꿀의 특이적인 59 kDa 단백질이 모든 시료에서 나타났다. 밤꿀과 토종꿀에서 양봉꿀의 특이성을 나타내는 59.0 kDa의 단백질 band 이외에 31.9-33.5 kDa 단백질의 존재가 확인되었다. 72 kDa의 단백질 band도 몇 종의 밤꿀(71.8, 71.9 kDa)에서 확인되었다.

Keywords

References

  1. Ahmet, G., Ayse, B., Cevat, N., and Oguzhan, Y. (2007) Determination of important biochemical properties of honey to discriminate pure and adulterated honey with sucrose(Saccarum officinarum L.) syrup. Food Chem. 105, 1119-1125. https://doi.org/10.1016/j.foodchem.2007.02.024
  2. Anklam, E. (1998) A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chem. 63, 549-562. https://doi.org/10.1016/S0308-8146(98)00057-0
  3. Bendar, M.M.(1971) Variation in the $^{13}C/^{12}C $ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10, 1239-1244. https://doi.org/10.1016/S0031-9422(00)84324-1
  4. Calvin, M. and Bassham, J.A.(1962) The photosynthesis of carbon compounds. Benjamin Inc., NY, USA, pp. 56-72
  5. Chang, H. G., Bae, J. H., Lee, D. T., Chun, S. K., and Kim, J. G. (1987) Mineral constituents of honey produced in Korea. Korean J. Food Sci. Technol. 19, 426-429.
  6. Cho, H.J. and Ha, Y.L.(2002) Determination of honey quality by near infrared spectroscopy. Korean J. Food Sci. Technol. 34, 356-360.
  7. Chung, W.C., Kim, M.W., Song, K.J., and Choi, E.H. (1984) Chemical composition in relation quality evaluation of Korean honey. Korean J. Food Sci. Technol. 16, 17-22.
  8. Deborah, R.S.(2002) Genetic diversity in Turkish honey bees. Uludag Bee J. 3, pp. 9-17.
  9. Donner, L.W.(1997) The sugars of honey: A review. J. Sci. Food Agric. 28, 443-456.
  10. Gheldof, N. and Engeseth, N. J. (2002) Antioxidant capacity of honeys from various floral sources based on the determination of oxygen radical absorbance capacity and inhibition of vitro lipoprotein oxidation in human serum samples. J. Agric. Food Chem. 50, 3050-3055. https://doi.org/10.1021/jf0114637
  11. Han, J.G., Kim, K., Kim, D.Y., and Lee, S.K. (1985) Composition, the change of diastase activity and hydroxymethylfurfural content during storage of the various honey samples. Korean J. Food Sci. Technol. 17, 155-162.
  12. Hatch, M.D. and Slack, C.R. (1979) Photosynthetic $CO_2$ fixation pathway. Ann. Rev. Plant Physiol. 21, 141-162.
  13. Hatch, M.D., Slack, C.R., and Johnson, H.S. (1967) Further studies on a new pathway of photosynthetic carbon dioxide fixation in sugar cane and its occurrence in other plant species. Biochem. J.102, 417-422.
  14. Hawer, W,D., Ha, J.H., and Nam, Y.J.(1992) The quality assessment of honey by stable carbon isotope analysis. J. Korean Soc. Anal. Sci. 5, 229-234.
  15. Jananthan, S. K. and Mandal, M. (2009) Antiproliferative effects of honey and of its polyphenols. J. Biomed. Biotech. 2009, 1-13
  16. Jung, M.E. and Lee, S. K. (2008) Quality characteristics of various honeys from different sources. Korean J. Food Sci. Ani. Resour. 28, 263-268. https://doi.org/10.5851/kosfa.2008.28.3.263
  17. Kim, B.N., Kim, T.J., and Cheigh, H.S. (1994) Free amino acid, sugar and enzyme activity of honey harvested in Kangwon area. J. Korean Soc. Food Nutr. 23, 680-685.
  18. Kim, E.S. and Rhee, C.O. (1996) Comparison of quality attributes of Korean native bee honey and foreign bee by K/Na ratio. J. Kor. Soc. Food Nutr. 25, 672-679.
  19. Korea Food and Drug Administration (2002) Food Code. Korean Foods Industry Association, Seoul, Korea, pp. 468-472.
  20. Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  21. Lee, D. C., Lee, S. Y., Cha, S. H., Choi, Y. S., and Rhee, H. I. (1997) Characteristics of native bee honey harvested in Kangwonaera. Korean J. Food Sci. Technol. 29, 1082-1088.
  22. Lee, D.C., Lee, S.Y., Cha, S.H., Choi, Y.S., and Rhee, H.I. (1998) Discrimination of native bee honey and foreign bee honey by SDS-PAGE. Korean J. Food Sci. Technol. 30, 1-5.
  23. Lee, H.S. and Nagy, S. (1990) Relative reactiveness of sugars in the formation of 5-hydroxymethylfurfural. J. Food Proc.Preserv. 14, 171-178. https://doi.org/10.1111/j.1745-4549.1990.tb00126.x
  24. Leonhardt, B., Astrid, K., Reinhold, H., Ute, S., Herwig, E., Otto, S., Dietrich, K., and Christof, E. (1996) Food allergy to honey: Characterization of allergenic proteins in honey by means of immunoblotting. J. Allergy Clin. Immunol. 97, 65-73. https://doi.org/10.1016/S0091-6749(96)70284-1
  25. Mendes, E., Proenca, B., Ferreira, I.M.P.L.V.O., and Ferreira, M.A.(1998) Quality evaluation of Portuguese honey. Carbohydr. Polym. 37, 219-223. https://doi.org/10.1016/S0144-8617(98)00063-0
  26. Murat, K., Sevg, K., Sengul, K., and Esra, U. (2007) Biological activities and chemical composition of three honeys of different types from Anatolia. Food Chem. 100, 526-534. https://doi.org/10.1016/j.foodchem.2005.10.010
  27. Musa, O., Derya, A., and Drumus, A.C. (2006) Effect of inverted saccharose on some properties of honey. Food Chem. 99, 24-29. https://doi.org/10.1016/j.foodchem.2005.07.009
  28. Padovan, G.J., Jong, D.De., Rodrigues, L.P., and Marchini, J.S. (2003) Detection of adulteration of commercial honey samples by the $^{13}C/^{12}C$ isotopic ratio. Food Chem. 82, 633-636. https://doi.org/10.1016/S0308-8146(02)00504-6
  29. Pontoh, J. and Low, N.H. (2002) Purification and characterization of β-glucosidase from honey bees (Apis mellifera). Insect Biochem. Mol. Biol.32, 679-690. https://doi.org/10.1016/S0965-1748(01)00147-3
  30. Rashed, M.N. and Soltan, M.E. (2004) Major and trace elements in different types of Egyptian mono-floral and nonfloral bee honeys. J. Food Comp. Anal. 17, 725-735. https://doi.org/10.1016/j.jfca.2003.10.004
  31. Smith, B.N. and Epstein, S. (1971) Two categories of $^{13}C/^{12}C$ ratios for higher plants. Plants Physiol. 47, 380-384. https://doi.org/10.1104/pp.47.3.380
  32. Sondgrass, R.E. and Erickson, E.H. (1992) The anatomy of the honey bee. In: The hive and the honey bee. Graham, J. M. (ed) Dadant and Sons Inc., IL, USA, pp. 103-169.
  33. Southwick, E.E. (1992) Physiology and social physiology of the honey bee. In: The hive and the honey Bee. Graham, J. M. (ed) Dadant and Sons, Inc., IL, USA, pp. 171-196.
  34. Tosi, E., Ciappini, M., and Lucero, H. (2002) Honey thermal treatment effects on hydroxymethylfurfural content. Food Chem. 77, 71-74. https://doi.org/10.1016/S0308-8146(01)00325-9
  35. Zappala, M., Fallico, B., Arena, E, and Verzera, A (2005) Methods for determination HMF in honey: A comparision. J. Food Control 6, 273-277.

Cited by

  1. Comparison of Proximate Components, Free Sugar, Vitamin C and Minerals of 16 Kinds of Honey produced in Korea with Manuka Honey     vol.25, pp.5, 2015, https://doi.org/10.17495/easdl.2015.10.25.5.867