Isolation, Identification, and Characterization of Ornithine-Producing Enterococcus faecalis OA18 from Kefir Grain

케피어그레인으로 제조한 요쿠르트로부터 Enterococcus faecalis OA18 균주의 분리 및 특성규명

  • Yu, Jin-Ju (Department of Biotechnology, Woosuk University Graduate School) ;
  • Kim, Su-Gon (Department of Biotechnology, Woosuk University Graduate School) ;
  • Seo, Kyoung-Won (Department of Biotechnology, Woosuk University Graduate School) ;
  • Oh, Suk-Heung (Department of Biotechnology, Woosuk University Graduate School)
  • 유진주 (우석대학교 대학원 생명공학과) ;
  • 김수곤 (우석대학교 대학원 생명공학과) ;
  • 서경원 (우석대학교 대학원 생명공학과) ;
  • 오석흥 (우석대학교 대학원 생명공학과)
  • Received : 2011.07.26
  • Accepted : 2011.09.14
  • Published : 2011.09.30

Abstract

Lactic acid bacteria (LAB) OA18 was isolated from yogurt prepared by using Kefir Grain as a starter. The OA18 strain was a Gram-positive, cocci-type bacterium, and able to grow anaerobically with $CO_2$ production. The OA18 strain grew well on MRS broth supplemented with 50 mM arginine at $30-37^{\circ}C$ and pH of 7.0-9.0. The optimum temperature and pH for growth are $37^{\circ}C$ and pH 7.0. The isolate fermented ribose, D-glucose, cellobiose, D-trehalose, but not L-xylose, D-melibiose, and inositol. The 16S rRNA gene sequence of the isolate showed 99.8% homology with the Enterococcus faecalis 16S rRNA gene (Access no. AB012212). Based on the biochemical characteristics and 16S rRNA gene sequence analysis data, it was identified and named as E. faecalis OA18. The E. faecalis OA18 strain showed a high ornithine-producing capacity in the presence of arginine and also showed an antimicrobial activity against Streptomyces strains such as Streptomyces coelicolor subsp. Flavus, S. coeruleorubidus, S. coeruleoaurantiacus, S. coelicolor, S. coeruleoprunus. The cell growth of E. faecalis OA18 strain was maintained in MRS broth with a NaCl concentration of 0-7%.

케피어그레인을 이용하여 제조한 요쿠르트로부터 젖산균 OA18을 분리하여 그 특성을 조사하였다. 분리된 균주는 그람양성, 구균이었으며, 혐기적 조건에서 이산화탄소를 생성하였다. 균주는 MRS 배지에서 $30-37^{\circ}C$ 온도 범위와 pH 7.0-9.0범위에서 잘 자랐으며, 성장을 위한 최적 온도와 pH는 각각 $37^{\circ}C$와 pH 7.0이었다. 분리된 젖산균은 리보오스, D-글루코오스, cellobiose, D-trehalose 등을 분해하여 산을 생성하였고, L-xylose, D-melibiose, inositol은 분해하지 못하였다. 16S rRNA gene 염기서열 분석을 통해 OA18 균주는 유전자은행(NCBI)에 등재되어 있는 Enterococcus faecalis (AB012212)의 염기서열과 99.8% 동질성이 있음을 확인하였다. 이와 같은 생화학적 특성과 염기서열 분석 결과를 토대로 분리된 균주를 Enterococcus faecalis OA18로 명명하였다. E. faecalis OA18균주는 오르니틴 생성능력과 Streptomyces coelicolor subsp. Flavus, S. coeruleorubidus, S. coeruleoaurantiacus, S. coelicolor, S. coeruleoprunus 대한 항균 활성을 보유하고 있었으며, 0-7% NaCl을 함유하는 MRS 배지에서 증식이 가능한 것으로 조사되었다.

Keywords

References

  1. Arena, M.E., F.M. Saguir, M.C. Manca, and M. Nadra. 1999. Arginine, citrulline and ornithine metabolism by lactic acid bacteria from wine. Int'l. J. Food Microbiol. 52, 155-161. https://doi.org/10.1016/S0168-1605(99)00133-6
  2. Baum, G., L.Y. Simcha, Y. Fridmann, T. Arazi, H. Katsnelson, and M. Zik. 1996. Calmodulin binding to glutamate decarboxylase is required for regulation and GABA metabolism and normal development in plants. EMBO J. 15, 2988-2996.
  3. Behr, J., M.G. Ganzle, and R.F. Vogel. 2006. Characterization of a highly hop-resistant Lactobacillus brevis strain lacking hop transport. Appl. Environ. Microbiol. 72, 6483-6492. https://doi.org/10.1128/AEM.00668-06
  4. Davidson, P.M. and M.E. Parish. 1989. Method for testing the efficacy of food antimicrobials. Food Technol. 43, 148-155.
  5. Demain, A.L. 1988. Contribution of genetics to the production and discovery of microbial pharmaceuticals. Pure Appl. Chem. 60, 833-836. https://doi.org/10.1351/pac198860060833
  6. Du Toit, M., C.M. Franz, L.M. Dicks, and W.H. Holzapfel. 2000. Preliminary characterization of bacteriocins produced by Enterococcus faecium and Enterococcus faecalis isolated from pig faeces. J. Appl. Microbiol. 88, 482-494. https://doi.org/10.1046/j.1365-2672.2000.00986.x
  7. Eguchi, T., K. Kaminaka, J. Shima, S. Kawamoto, K. Mori, S.H. Choi, K. Doi, S. Ohmomo, and S. Ogata. 2001. Isolation and characterization of enterocin SE-K4 produced by thermophilic enterococci, Enterococcus faecalis K-4. Biosci. Biotechnol. Biochem. 65, 247-253. https://doi.org/10.1271/bbb.65.247
  8. Evain-Brion, D., M. Donnadieu, M. Roger, and J. Job. 1982. Simultaneous study of somatotrophic and corticotrophic pituitary secretions during ornithine infusion test. Clin. Endocrinol. 17, 119-122. https://doi.org/10.1111/j.1365-2265.1982.tb01571.x
  9. Garrote, G.L., A.G. Abraham, and G.L. De Antoni. 1998. Characteristics of kefir prepared with different grain: milk ratios. J. Dairy Res. 65, 149-154. https://doi.org/10.1017/S0022029997002677
  10. Gilmore, M.S., D.B. Clewell, P. Courvalin, G.M. Dunny, B.E. Murray, and L.B. Rice. 2002. Nonhuman reservoirs of Enterococci, pp. 56-100. In M.S. Gilmore (ed.), The Enterococci: pathogenesis, molecular biology, and antibiotic resistance, American Society for Microbiology Press, Washington, DC, USA.
  11. Jang, S.H. 2011. Control of Listeria monocytogenes on smoked salmon by antimicrobial effect of lactic acid bacteria. Food Industry Nutr. 16, 1-4.
  12. Jeevanandam, M., N.I. Holaday, and S.R. Petersen. 1996. Ornithine $\alpha$-ketoglutarate (OKG) supplementation is more effective than its component salts in traumatized rats. J. Nutrition 126, 2141-2150.
  13. Jeong, K.H., J.H. Choi, J.M. Lee, J.H. Lee, S.Y. Jang, and Y.J. Jeong. 2002. Fermentation characteristic of kefir beverage added fruit juice. Food Ind. Nutrition 7, 35-38.
  14. Kandler, O. and P. Kunath. 1983. Lactobacillus kefir sp., component of microflora of kefir. Syst. Appl. Microbiol. 4, 286-294. https://doi.org/10.1016/S0723-2020(83)80057-5
  15. Kemp, N. 1984. Kefir, the champagne of cultured dairy products. Cultured Dairy Products J. 19, 29-30.
  16. Kim, M.J. 2010. Preparation and characterization of kimchi using lactic acid bacteria having GABA and ornithine producing capacity and its some functional properties. MS thesis, Chonbuk Nat'l. Univ., Jeonju.
  17. Kim, J.Y., J.A. Lee, K.L. Kim, W.J. Yoon, W.J. Lee, and S.Y. Park. 2007. Antioxidative and antimicrobial activities of Sargassum muticum extracts. J. Korean Soc. Food Sci. Nutr. 36, 663-669. https://doi.org/10.3746/jkfn.2007.36.6.663
  18. Kim, D.S., S.K. Park, H.S. Kwak, and K.W. Lee. 1994. Isolation, identification and characterization of lactose non-fermenting yeast from kefir cultures. Korean J. Food Sci. Resour. 14, 175-178.
  19. Lee, J.S., K.C. Lee, J.S. Ahn, T.I. Mheen, Y.R. Byun, and Y.H. Park. 2002. Weissella. koreensis sp. nov., isolated from kimchi. Int. J. Syst. Evol. Microbiol. 52, 1257-1261. https://doi.org/10.1099/ijs.0.02074-0
  20. Lim, S.M. 2005. Synergistic effect of physico-chemical treatment and bacteriocin produced by Enterococcus faecium MJ-14. J. Fd. Hyg. Safety 20, 217-224.
  21. Lim, Y.S., S.Y. Kim, and S.K. Lee. 2008. Characteristics of lactic acid bacteria isolated from kefir made of goat milk. Korean J. Food Sci. Ani. Resour. 28, 82-90. https://doi.org/10.5851/kosfa.2008.28.1.82
  22. Liu, S.Q., R. Holland, and V.L. Crow. 2003. The potential of dairy lactic acid bacteria to metabolise amino acids via non-transaminating reactions and endogenous transamination. Int. J. Food Microbiol. 86, 257-269. https://doi.org/10.1016/S0168-1605(03)00040-0
  23. Muting, D. and J.F. Kalk. 1992. Long-term effectiveness of highdosed ornithine-aspartate on urea synthesis rate and portal hypertension in human liver cirrhosis. Amino Acids 3, 147-153. https://doi.org/10.1007/BF00806780
  24. Nam, H.R., M.S. Ha, E.J. Lee, and Y.H. Lee. 2002. Effect of Enterococcus faecalis strain PL9003 on adherence and growth of Helicobacter pylori. J. Microbiol. Biotechnol. 12, 746-752.
  25. Park, K.B. and S.H. Oh. 2006. Isolation and characterization of Lactobacillus buchneri strains with high $\gamma-aminobutyric $ acid producing capacity from naturally aged cheese. Food Sci. Biotechnol. 15, 86-90.
  26. Sabia, C., S. Niederhausern, P. Messi, G. Manicardi, and M. Bondi. 2003. Bacteriocin-producing Enterococcus casseliflavus IM 416K1, a natural antagonist for control of Listeria monocytogenes in Italian sausages ("cacciatore"). Int. J. Food Microbiol. 87, 173-179. https://doi.org/10.1016/S0168-1605(03)00043-6
  27. Sharpe, M.E., T.F. Fryer, and D.G. Smith. 1996. Identification of lactic acid bacteria, pp. 65-79. In B.M. Gibbs and F.A. Skinner (eds.). Identification Methods for Microbiologists: part A. Academic Press, Inc., New York, USA.
  28. Shi, H.P., R.S. Fishel, D.T. Efron, J.Z. Williams, M.H. Fishel, and A. Barbul. 2002. Effect of supplemental ornithine on wound healing. J. Surgical Res. 106, 299-302. https://doi.org/10.1006/jsre.2002.6471
  29. Uchisawa, H., A. Sato, J. Ichita, H. Matsue, and T. Ono. 2004. Influence of low-temperature processing of the brackish water bivalve, Corbicula japonica, on the ornithine content of its extract. Biosci. Biotechnol. Biochem. 68, 1228-1234. https://doi.org/10.1271/bbb.68.1228
  30. Wolpert, M., B. Gust, B. Kammerer, and L. Heide. 2007. Effects of deletions of mbtH-like genes on clorobiocin biosynthesis in Streptomyces coelicolor. Microbiology 153, 1413-1423. https://doi.org/10.1099/mic.0.2006/002998-0
  31. Yu, J.J. and S.H. Oh. 2010. Isolation and characterization of lactic acid bacteria strains with ornithine producing capacity from natural sea salt. J. Microbiol. 48, 467-472. https://doi.org/10.1007/s12275-010-0204-9
  32. Yu, J.J., H.J. Park, S.G. Kim, and S.H. Oh. 2009. Isolation, identification, and characterization of Weissella strains with high ornithine producing capacity from kimchi. Korean J. Microbiol. 45, 339-345.