DOI QR코드

DOI QR Code

Assessment of Silicate Fetilizers Application Affecting Soil Properties in Paddy Field

논토양에서 규산질비료 시용이 토양 환경에 미치는 영향

  • Joo, Jin-Ho (Department of Biological Environment, Kangwon National University) ;
  • Lee, Seung-Been (Department of Biological Environment, Kangwon National University)
  • 주진호 (강원대학교 바이오자원환경학과) ;
  • 이승빈 (강원대학교 바이오자원환경학과)
  • Received : 2011.11.08
  • Accepted : 2011.12.13
  • Published : 2011.12.31

Abstract

Application of silicate fertilizers is typically practiced with several year's interval to amend soil quality and improve rice productivity at the paddy field in Korea. Most of silicate fertilizers applied in Korea is slag-originated silicate fertilizer. Some water soluble silicate fertilizers are manufactured and commercially available. The objective of this study was to assess changes of soil chemical properties in paddy field by applying slag-originated silicate fertilizer and water soluble silicate fertilizer. Field experiment was conducted on a silt loam paddy soil, where four levels of each silicate fertilizer were applied in soil at the rate of 0, 1, 2, 4 times of the recommended levels. Application of slag-originated silicate fertilizer increased soil pH, while no significant pH increase occurred with the treatment of water soluble silicate fertilizers. Soil pH increased 0.4~0.5 with the 1 time of recommended level of slag-originated silicate fertilizer. Available $SiO_2$ contents also significantly increased with the treatment of slag-originated silicate fertilizer at 15 and 35 days after treatment, while decreased after 60 days after treatment possibly due to rice uptake. Exchangeable Ca, Mg and available phosphate contents in soil increased with application of slag-originated silicate fertilizer, while a little increases for them were shown with the application of soluble silicate fertilizer. $SiO_2$/N ratios in rice straw for 1 time of recommended level of slag-originated silicate fertilizer was 11.5, while that of control was 8.4, which was much lower value. Throughout this study, soil application of slag-originated silicate fertilizer enhanced soil chemical properties, while water soluble silicate fertilizer application in soil needs further study resulting in a little effects on soil property.

본 연구는 논 토양에서 규산질 비료의 성상이 다른 두 종의 규산질 비료의 토양 시비를 통한 토양의 화학적 특성 변화와 벼의 화학적 영양 성분을 평가하고자 수행하였다. 강원도 춘천시 소재 논 토양에서 두 종 (슬래그를 이용한 입상 규산질 비료와 수용성 입상 규산질 비료)의 규산 처리 수준에 따른 토양환경 변화를 보기 위해 무처리와 관행시비, 처리 기준의 0, 1, 2, 4배 처리 후 토양 화학적 변화를 고찰하였다. 슬래그를 이용한 규산질 비료의 처리 시 토양 pH는 시험 전 토양 pH에 비하여 상승하였으나 수용성 규산염을 원료로 한 규산질 비료의 처리 시에는 pH의 변화가 나타나지 않았는데 이는 수용성 규산염의 처리 양이 적고 가수분해율이 적기 때문인 것으로 판단된다. 슬래그를 이용한 규산질 비료를 처리한 구의 토양 유효규산 함량은 15일과 35일까지는 슬래그를 이용한 모든 규산질 비료 처리 구에서 증가하였다. 하지만 처리 60일 후부터는 유효규산 함량이 감소하는 것으로 나타났으나 수용성 규산염을 원료로 한 규산질 비료의 경우에는 토양 유효규산 함량의 증가가 대조구와 비교하여 볼 때 매우 적게 증가한 것으로 나타났다. 슬래그를 이용한 규산질 비료 처리구에서는 처리량에 관계없이 무처리 구에 비해 치환성 칼슘과 유효 인산 함량이 증가하는 것으로 나타났으나 최고 수준 (4배)의 처리구에서의 유효 인산 함량은 비례적으로 증가하지는 않았다. 슬래그를 이용한 규산질 비료 처리구에서의 볏짚의 규산 함량은 무처리구와 관행 처리구에 비해 모두 증가하는 것으로 나타났다. 즉, 규산질 비료를 처리함에 따라 규질비 ($SiO_2$/N)가 증가하였다. 관행 처리구와 슬래그를 이용한 규산질 비료 100% 처리시의 규질비는 각각 8.4와 11.5로 나타났다. 본 실험의 연구 결과를 통하여 슬래그를 이용한 규산질 비료의 토양시비는 토양의 화학적 성질 개선 및 수도 생육을 위해 바람직하나 수용성 규산질 비료의 경우에는 엽면 시비를 통한 액상 분무 등을 통하여 시비를 하는 것이 바람직하다고 판단된다.

Keywords

References

  1. Cho, H.J., H.Y. Choi, Y.W. Lee, Y.J. Lee, and J.B. Chung. 2004. Availability of silicate fertilizer and its effect on soil pH in upland soil. Korean J. Environ. Agri. 23(2):104-110. https://doi.org/10.5338/KJEA.2004.23.2.104
  2. Hallmark, C.T., L.P. Wilding, and N.E. Smeck. 1982. Silicon, p. 263-273. In A. L. Page et al. (ed.) Methods of soil analysis, Part 2: Chemical and microbiological properties, Soil Science Society of America, Madison, Wl, USA.
  3. Jung, B.G., G.B. Jung, J.H. Yoon., H.J. Jun., K.R. Cho., S.J. Lim, and Y.H. Lee. 2003. Monitoring project on agri-environment quality in Korea. National Institute of Agricultural Science and Technology. 14-55.
  4. Jung, K.Y., S.J. Cho, and J.J. Kim. 1985. Effects of rice straw and wollastonite application on the growth and yield of rice plant. Korean J. Soil Sci. Fert. 18(2):148-155.
  5. Kang, Y.K. and C.A. Stutte. 1982. Silicon influence on growth and some physiological activities of rice. Res. Rept. ORD(C) 24:1-17.
  6. Kang, Y.S. 2001. Workshop on silicate fertilizer use and development. proceeding of Korean J. Soil Sci. Fert. 23-35.
  7. Kim, C.B., D.H. Lee, and J. Choi. 2002a. Effects of soil improvement on the dependence of rice nutrient contents and grain quality. Korean J. Soil Sci. Fert. 35(5):296-305.
  8. Kim, C.B. and J. Choi. 2002b. Changes in rice yield, nutrient's use efficiency and soil chemical properties as affected by annual application of slag silicate fertilizer. Korean J. Soil Sci. Fert. 35(5):280-289.
  9. Kim, C.B., N.K. Park., S.D. Park., D.U. Choi., S.G. Son, and J. Choi. 1986. Changes in rice yield and soil physicochemical properties as affected by annual application of silicate fertilizer to the paddy soil. Korean J. Soil Sci. Fert. 19(2):123-131.
  10. Kim, C.B., S.H. Kim, N.K. Park, S.D. Park. and D.U. Choi. 1985. Effects of application of slag as silicate material on rice yield in normal paddy soil. Res. Rept. ORD. 27(1):41-40.
  11. Kim, J.Y. 2011. Manufacturing and applications of soluble silicates. p 45-62, p 339-345. Hallyim publisher. Korea.
  12. Kim, S.B. 2008. Effect of silicon fertilizer application on the paddy rice and soil physiochemcial properties. Chonnam National University. Ph.D. thesis.
  13. Lee, C.H., M.S. Yang, K.W. Chang, Y.B. Lee, K.Y. Chung, and P.J. Kim. 2005. Reducing nitrogen fertilization level of rice (Oryza sativa L.) by silicate application in Korean paddy soil. Korean J. Soil Sci. Fert. 38(4):194-201.
  14. Lim, S.K., J.S. Shin, and Y.S. Park. 1981. Study on increase of slag utilization. Research report of National Institute of Agricultural Science and Technology. 9-36.
  15. Lim, S.U. and N.I. Baek. 1983. Interaction between silicate and phosphate fertilizers applied in paddy soils. Korean J. Soil Sci. Fert. 16(4):325-332.
  16. Miller, W.P. and D.M. Miller. 1987. A micro-pipette method for soil mechanical analysis. Commun. Soil Sci. Plant Anal. 18:1-15. https://doi.org/10.1080/00103628709367799
  17. Nelson, D.W. and L.E. Sommers. 1982. Total carbon, organic carbon, and organic matter, p. 539-579. In A. L. Page et al. (ed.) Method of soil analysis, Part 2: Chemical and microbiological properties, Soil Science Society of America, Madison, WI, USA.
  18. Olsen, S.R. and L.E. Sommers. 1982. Phosphorus, P. 403- 430. In A. L. Page et al. (ed). Methods of soil analysis, Part 2: Chemical and microbiological properties, Soil Science Society of America, Madison, WI, USA.
  19. Park, C.S. 1970. Studies on the relation between available silica content and the effect of silicate, the distribution pattern of available silica content and requirement in Korea paddy top soil. RDA, J. Agri. Sci. 13:1-29.
  20. Ponnamperuma, F.N. 1973. The chemistry of submergence soils. Advance in Agronomy. 24:29-88.
  21. RDA. 1999. Fertilization standard of crop plant. National Institute of Agricultural Science and Technology, Rural Development Administration, Suwon, Korea.
  22. RDA. 2000. Methods for soil and plant analysis. pp 135-142. RDA, Suwon, Korea.
  23. Sommer, A. H. 1926. Studies concerning the essential nature of aluminum and silicon for plant growth. Univ. California Publ. Agri. Sci. 5:57.
  24. Song Y.S., H.H. Jun, B.G. Jung., W.K. Park., K.S. Lee., H.K. Kwak., J.H. Yoon., C.S. Lee., B.Y. Yeon., P.J. Kim, and Y.S. Yoon. 2007. Determination of optimum rate and interval of silicate fertilizer application for rice cultivation in Korea. Korean J. Soil Sci. Fert. 40(5):354-363.
  25. Takahashi, E.J., F. Ma, and Y. Miyake. 1990. The possibility of silicon as an essential element for higher plants. Comments Agric. Food Chemistry. 2:99-102.
  26. Yoon, S.K. 1970. Effect of silicate fertilizer resources. Research report of National Institute of Agricultural Sciences. 216-232.
  27. Yoshida, S.Y., Y. Ohnishi, and K. Sitagishi. 1959. Role of silicon in rice nutrition. Soil & Plant Food. 5:23. https://doi.org/10.1080/00380768.1959.10430890

Cited by

  1. Reduction Effects of Residual Pesticides using the Eco-friendly Soil Amendments in Agricultural Soil vol.20, pp.4, 2016, https://doi.org/10.7585/kjps.2016.20.4.312
  2. Analysis of Environmental Properties of Paddy Soils with Regard to Seasonal Variation and Farming Methods vol.39, pp.6, 2017, https://doi.org/10.4491/KSEE.2017.39.6.311
  3. Effects of Granular Silicate on Watermelon (Citrullus lanatus var. lanatus) Growth, Yield, and Characteristics of Soil Under Greenhouse vol.48, pp.5, 2015, https://doi.org/10.7745/KJSSF.2015.48.5.456
  4. Soil pH increase under paddy in South Korea between 2000 and 2012 vol.221, 2016, https://doi.org/10.1016/j.agee.2016.01.042
  5. Long-term Application Effect of Silicate Fertilizer on Soil Silicate Storage and Rice Yield vol.49, pp.6, 2016, https://doi.org/10.7745/KJSSF.2016.49.6.819
  6. Influences of Silicate Fertilizer Application on Soil Properties and Red Pepper Productivity in Plastic Film House vol.33, pp.4, 2014, https://doi.org/10.5338/KJEA.2014.33.4.254
  7. Growth and Quality Changes of Creeping Bentgrass by Application of Liquid Fertilizer Containing Silicate vol.5, pp.3, 2016, https://doi.org/10.5660/WTS.2016.5.3.170