DOI QR코드

DOI QR Code

A Study of the Optimum Pore Structure for Mercury Vapor Adsorption

  • Kim, Byung-Joo (Smart Composite Material Research Team, Carbon Valley R&D Division, Jeonju Institute of Machinery and Carbon Composites) ;
  • Bae, Kyong-Min (Department of Chemistry, Inha University) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • Received : 2010.11.24
  • Accepted : 2011.03.03
  • Published : 2011.05.20

Abstract

In this study, mercury vapor adsorption behaviors for some kinds of porous materials having various pore structures were investigated. The specific surface area and pore structures were studied by BET and D-R plot methods from $N_2$/77 K adsorption isotherms. It was found that the micropore materials (activated carbons, ACs) showed the highest mercury adsorption capacity. In a comparative study of mesoporous materials (SBA-15 and MCM-41), the adsorption capacity of the SBA-15 was higher than that of MCM-41. From the pore structure analysis, it was found that SBA-15 has a higher micropore fraction compared to MCM-41. This result indicates that the mercury vapor adsorptions can be determined by two factors. The first factor is the specific surface area of the adsorbent, and the second is the micropore fraction when the specific surface areas of the adsorbent are similar.

Keywords

References

  1. Darbha, G. K.; Singh, A. K.; Rai, U. S.; Yu, E.; Yu, H.; Yu, H.; Ray, P. C. J. Am. Chem. Soc. 2008, 130, 8038. https://doi.org/10.1021/ja801412b
  2. Pavlish, J. H.; Hamre, L. L.; Zhuang, Y. Fuel 2010, 89, 838. https://doi.org/10.1016/j.fuel.2009.05.021
  3. Ji, H.; Kim, J.; Yoo, J. W.; Lee, H. S.; Park, K. M.; Kang, Y. Bull. Korean Chem. Soc. 2010, 31, 1371. https://doi.org/10.5012/bkcs.2010.31.5.1371
  4. ShamsiJazeyi, H.; Kaghazchi, T. J. Ind. Eng. Chem. 2010, 16, 852. https://doi.org/10.1016/j.jiec.2010.03.012
  5. Kruk, M.; Jaroniec, M. Chem. Mater. 2001, 13, 3169. https://doi.org/10.1021/cm0101069
  6. Kim, D. J.; Kim, J. W.; Choung, S. J.; Kang, M. J. Ind. Eng. Chem. 2011, 14, 308.
  7. Jaroniec, M.; Solovyov, L. A. Chem. Commun. 2006, 2242.
  8. Lee, B. I.; Bae, D.; Kang, J. K.; Kim, H.; Byeon, S. H. Bull. Korean Chem. Soc. 2009, 30, 1701. https://doi.org/10.5012/bkcs.2009.30.8.1701
  9. Mattsson, S.; Nystrom, C. Eur. J. Pharm. Biopharm. 2001, 52, 237. https://doi.org/10.1016/S0939-6411(01)00163-1
  10. Park, S. J.; Jang, Y. S.; Shim, J. W.; Ryu, S. K. J. Colloid Interface Sci. 2003, 260, 259. https://doi.org/10.1016/S0021-9797(02)00081-4
  11. Bradley, R. H. Carbon 1991, 29, 893. https://doi.org/10.1016/0008-6223(91)90165-F
  12. Bagreev, A.; Bashkova, S.; Bandosz, T. J. Langmuir 2002, 18, 1257. https://doi.org/10.1021/la011320e
  13. Kim, J. M.; Kwak, J. H.; Jun, S.; Ryoo, R. J. Phys. Chem. 1995, 99, 16742. https://doi.org/10.1021/j100045a039
  14. Park, S. J.; Lee, S. Y. J. Colloid Interface Sci. 2010, 346, 194. https://doi.org/10.1016/j.jcis.2010.02.047
  15. Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309. https://doi.org/10.1021/ja01269a023
  16. Kim, B. J.; Lee. Y. S.; Park, S. J. J. Colloid Interface Sci. 2007, 306, 454. https://doi.org/10.1016/j.jcis.2006.10.038
  17. Dubinin, M. M.; Plavnik, G. M. Carbon 1968, 6, 183. https://doi.org/10.1016/0008-6223(68)90302-3
  18. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710. https://doi.org/10.1038/359710a0
  19. Han, O. H.; Bae, Y. K.; Jeong, S. Y. Bull. Korean Chem. Soc. 2008, 29, 405. https://doi.org/10.5012/bkcs.2008.29.2.405
  20. Gregg, S. J.; Sing, K. S. W. Adsorption, Surface Area and Porosity; Academic Press: New York, 1982.
  21. Meng, L. Y.; Cho, K. S.; Park, S. J. Carbon lett. 2010, 11, 34. https://doi.org/10.5714/CL.2010.11.1.034
  22. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603. https://doi.org/10.1351/pac198557040603
  23. Ciesla, U.; Schüth, F. Microporous Mesoporous Mater. 1999, 27, 131. https://doi.org/10.1016/S1387-1811(98)00249-2
  24. Gucbilmez, T.; Dogu, T.; Balci, S. Catal. Today 2005, 100, 473. https://doi.org/10.1016/j.cattod.2004.10.032

Cited by

  1. A review of elemental mercury removal processing vol.12, pp.3, 2011, https://doi.org/10.5714/CL.2011.12.3.121
  2. Facile fabrication of Poly(vinyl alcohol)/Silica composites for removal of Hg(II) from water vol.23, pp.1, 2015, https://doi.org/10.1007/s13233-015-3010-8
  3. Preparation and characterization of aluminum silicotitanate: ion exchange behavior for some lanthanides and iron vol.91, pp.8, 2015, https://doi.org/10.1002/jctb.4810
  4. Sulfur dioxide as an activating agent for sulfur-impregnated activated carbon produced from dense petroleum coke vol.34, pp.4, 2011, https://doi.org/10.1080/17415993.2012.739622
  5. Overlook of carbonaceous adsorbents and processing methods for elemental mercury removal vol.15, pp.4, 2011, https://doi.org/10.5714/cl.2014.15.4.238