DOI QR코드

DOI QR Code

Volatile Changes in Beverages and Encapsulated Powders Containing an Artemisia Extract during Production and Storage

쑥 추출물 함유 음료와 미세캡슐의 제조 및 저장 중 휘발성분 변화

  • Park, Min-Hee (Department of Food Science and Technology, Seoul National University of Science and Technology) ;
  • Kim, Mi-Ja (Department of Food Science and Technology, Seoul National University of Science and Technology) ;
  • Cho, Wan-Il (Sensometrics Co., Ltd.) ;
  • Chang, Pahn-Shick (Center for Agricultural Biomaterials, Department of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Jae-Hwan (Department of Food Science and Technology, Seoul National University of Science and Technology)
  • 박민희 (서울과학기술대학교 식품공학과) ;
  • 김미자 (서울과학기술대학교 식품공학과) ;
  • 조완일 ((주)센소메트릭스) ;
  • 장판식 (서울대학교 농생명공학부 식품생명공학과) ;
  • 이재환 (서울과학기술대학교 식품공학과)
  • Received : 2011.01.23
  • Accepted : 2011.03.14
  • Published : 2011.06.30

Abstract

Volatile profiles of beverages and encapsulated powders containing Artemisia princeps Pampan extracts were analyzed by solid-phase microextraction-gas chromatography/mass spectrometry during production and storage. Beverages containing 0.32 and 0.64% extracts were stored at room temperature for 8 weeks and $60^{\circ}C$ for 8 days, respectively. Encapsulated particles were stored at room temperature and $60^{\circ}C$ for 8 days. Total volatiles in beverages decreased significantly during storage, irrespective of storage condition (p<0.05). Terpenoids, including cymene, thujone, and ${\beta}$-myrcene, were major volatiles in beverages, and some volatiles including ethylfuran, vinylfuran, and 2-fufural increased in 60oC samples only. Total volatiles in microcapsules at room temperature were not significant different for 8 days (p>0.05), whereas those at $60^{\circ}C$ increased by 16.5 times. Limonene was the most detected volatile in microcapsules, and aldehydes such as hexanal, pentanal, and octanal, and furans such as 2-butylfuran and 2-pentylfuran increased in the $60^{\circ}C$ samples, which may have originated from oxidized lipids used in the microcapsules.

저장온도 및 기간에 따른 참쑥(Artemisia princeps Pampan) 추출물을 함유한 음료 및 미세캡슐의 휘발성 성분변화를 SPMEGC/MS로 분석하였다. 쑥 추출물을 0.32, 0.64% 함유한 음료 S1, S2는 상온에서 8주간, $60^{\circ}C$에서 8일간 저장하고 쑥 추출물 함유미세캡슐은 상온과 $60^{\circ}C$에서 각각 8일간 저장하였으며 휘발성성분을 측정하였다. 저장 기간이 증가할수록 쑥 추출물 함유 음료의 총 휘발성 성분 함량은 유의적으로 감소하였다(p<0.05). Cymene, thujone, ${\beta}$-myrcene 등을 포함한 terpenoid류는 쑥 추출 물 함유 음료의 주요 휘발성 성분으로 동정되었으며, $60^{\circ}C$에서 저장한 쑥 추출물 함유 음료에서는 추가적으로 ethylfuran, vinylfuran, 2-fufural의 furan류 성분이 증가하였다. 쑥 추출물 함유 미세캡슐을 8일간 저장한 후, 총 휘발성 성분함량을 측정한 결과 상온에서 저장한 경우는 유의적인 변화가 없었으나 $60^{\circ}C$에서 저장한 경우는 유의적으로 16.5배 증가하였다(p<0.05). 쑥 추출물 함유 미세캡슐의 주요 휘발성 성분으로는 limonene이 가장 높았으며, $60^{\circ}C$에서 저장한 쑥 추출물 함유 미세캡슐에서만 유지산화에 의한 hexanal, pentanal, octanal, heptanal, nonanal 등의 aldehyde류와 2-butylfuran, 2-pentylfuran과 같은 furan류가 추가로 검출되었다. 이는 미세캡슐제조 시 사용된 피복물질의 산화에서 유래한 된 것으로 예측된다.

Keywords

References

  1. Rho TH, Seo GS. Growth characteristics and contents of chemical components in early cultured Artemisia sp. Korean J. Medicinal Crop Sci. 2: 95-100 (1994)
  2. Jang SB, Chang SY, Inn MK, Jeong JH, Yook CS. Studies on the components of essential oils in the aerial part of Artemisia mongolica. Bull. K. H. Pharma. Sci. 28: 45-49 (2000)
  3. Kim YS, Lee JH, Kim MN, Lee WG, Kim JO. Volatile flavor compounds form raw mugwort leaves and parched mugwort tea. Korean J. Food Nutr. 23: 261-267 (1994)
  4. Choi BB, Lee HJ, Bang SK. Studies on the volatiles flavor components and biochemical characterizations of Artemisia princeps and A. argyi. Korean J. Food Nutr. 18: 334-340 (2005)
  5. Lee SJ, Chung HY, Lee IK, Yoo ID. Isolation and identification of flavonoids from ethanol extracts of Artemisia vulgaris and their antioxidant activity. Korean J. Food Sci. Technol. 31: 815- 822 (1999)
  6. Lee GD, Kim JS, Bae JO, Yoon HS. Antioxidative effectiveness of water extract and ether extract in wormwood (Artemisia montana Pampan). Korean J. Food Nutr. 21: 17-22 (1992)
  7. Yun KW, Jeong HJ, Kim JH. The influence of the growth season on the antimicrobial and antioxidative activity in Artemisia princeps var. Orientalis. Ind. Crop Prod. 27: 69-74 (2008) https://doi.org/10.1016/j.indcrop.2007.07.017
  8. Kwon MC, Kim CH, Kim HS, Lee SH, Chio GP, Park UY, You SG, Lee HY. Optimal extract condition for the enhancement of anticancer activities of Artemisia princeps Pampanini. Korean J. Medicinal Crop Sci. 15: 233-240 (2007)
  9. Kwon MC, Kim CH, Kim HS, Lee SH, Chio GP, Park UY, You SG, Lee HY. Optimal extract condition for the enhancement of anticancer activities of Artemisia princeps Pampanini. Korean J. Medicinal Crop Sci. 15: 233-240 (2007)
  10. Cho YH, Chiang MH. Essential oil composition and antibacterial activity of Artemisia capillaris, Artemisia argyi, and Artemisia princeps. Korean J. Intl. Agri. 13: 313-320 (2001)
  11. Park MH, Kim MJ, Cho IL, Chang PS, Lee JH. Effects of treatments on the distribution of volatiles in Artemisia princeps Pampan. Korean J. Food Sci. Biotechnol. 41: 587-591 (2009)
  12. Park MH, Kim MJ, Cho IL, Chang PS, Lee JH. Effects of treatments on the distribution of volatiles in Artemisia princeps Pampan. Korean J. Food Sci. Biotechnol. 41: 587-591 (2009)
  13. Park MH, Kim MJ, Cho IL, Chang PS, Lee JH. Effects of treatments on the distribution of volatiles in Artemisia princeps Pampan. Korean J. Food Sci. Biotechnol. 41: 587-591 (2009)
  14. Lee KW, Baick SC, Kim SK, Kim HU. Properties and yield of the microencapsules made with hydrogenated corn oil. Korean J. Dairy Sci. 20: 169-176 (1998)
  15. Lee KW, Baick SC, Kim SK, Kim HU. Properties and yield of the microencapsules made with hydrogenated corn oil. Korean J. Dairy Sci. 20: 169-176 (1998)
  16. Park BK, Lee JH, Shin HK, Lee JH, Chang PS. Optimization of conditions for the double layer microencapsulation of lactic acid bacteria. Korean J. Food Sci. Technol. 38: 767-772 (2006)
  17. Lee JM, Kim DH, Chang PS, Lee JH. Headspace-solid phase microextraction (HP-SPME) analysis of oxidized volatiles from free fatty acids (FFA) and application for measuring hydrogen donating antioxidant activity. Food Chem. 105: 414-420 (2007) https://doi.org/10.1016/j.foodchem.2006.12.059
  18. Lee JM, Kim DH, Chang PS, Lee JH. Headspace-solid phase microextraction (HP-SPME) analysis of oxidized volatiles from free fatty acids (FFA) and application for measuring hydrogen donating antioxidant activity. Food Chem. 105: 414-420 (2007) https://doi.org/10.1016/j.foodchem.2006.12.059
  19. Kuratsune M. Benzo[a]pyrene content of certain pyrogenic materials. J. Natl. Cancer Inst. 16: 1485-1496 (1956)
  20. Jeong MC, Lee MK, Lee HA, Park JY. Low-temperature microencapsulation of sesame oil using fluidized bed granulation. Korean J. Food Sci. Technol. 41: 27-31 (2009)
  21. Jeong MK, Lee JM, Lee JH. Correlation of volatiles and fatty acids in thermally oxidized fatty acid model systems using statistical approaches. Food Sci. Biotechnol. 19: 1233-1239 (2010) https://doi.org/10.1007/s10068-010-0176-x

Cited by

  1. Quality properties of fermented mugworts and the rapid pattern analysis of their volatile flavor components via surface acoustic wave (SAW) based electronic nose sensor in the GC system vol.20, pp.4, 2013, https://doi.org/10.11002/kjfp.2013.20.4.554
  2. Preparation and Characterization of Aminated Gelatin-Fucoidan Microparticles vol.44, pp.2, 2012, https://doi.org/10.9721/KJFST.2012.44.2.191
  3. The Variation of the Major Compounds of Artemisia princeps var. orientalis (Pampan) Hara Essential Oil by Harvest Year vol.28, pp.4, 2015, https://doi.org/10.9799/ksfan.2015.28.4.533
  4. Shelf life of β-glucan microcapsules from the medicinal mushrooms (Phellinus baumii and Ganoderma lucidum) vol.25, pp.6, 2018, https://doi.org/10.11002/kjfp.2018.25.6.634