DOI QR코드

DOI QR Code

Impact of Meteorological Wind Fields Average on Predicting Volcanic Tephra Dispersion of Mt. Baekdu

백두산 화산 분출물 확산 예측에 대기흐름장 평균화가 미치는 영향

  • Lee, Soon-Hwan (Institute of Environment Studies, Pusan National University) ;
  • Yun, Sung-Hyo (Department of Earth Science Education, Pusan National University)
  • Received : 2011.06.09
  • Accepted : 2011.07.12
  • Published : 2011.08.31

Abstract

In order to clarify the advection and dispersion characteristics of volcanic tephra to be emitted from the Mt. Baekdu, several numerical experiments were carried out using three-dimensional atmospheric dynamic model, Weather and Research Forecast (WRF) and Laglangian particles dispersion model FLEXPART. Four different temporally averaged meteorological values including wind speed and direction were used, and their averaged intervals of meteorological values are 1 month, 10 days, and 3days, respectively. Real time simulation without temporal averaging is also established in this study. As averaging time of meteorological elements is longer, wind along the principle direction is stronger. On the other hands, the tangential direction wind tends to be clearer when the time become shorten. Similar tendency was shown in the distribution of volcanic tephra because the dispersion of particles floating in the atmosphere is strongly associated with wind pattern. Wind transporting the volcanic tephra is divided clearly into upper and lower region and almost ash arriving the Korean Peninsula is released under 2 km high above the ground. Since setting up the temporal averaging of meteorological values is one of the critical factors to determine the density of tephra in the air and their surface deposition, reasonable time for averaging meteorological values should be established before the numerical dispersion assessment of volcanic tephra.

백두산 화산분출물의 이류와 확산 예측 특성을 살펴보기 위하여 3차원 대기역학 모형인 WRF와 입자 확산 모형인 FLEXPART를 결합하여 다양한 수치실험을 실시하였다. 기상자료의 시간 평균화에 따른 영향을 보기 위하여 네가지 서로 다른 평균화 기간을 가진 수치 실험을 실시하였다. 본 연구에 적용된 기상자료의 평균화 기간은 각각 1개월, 10일, 3일이다. 또한 평균화를 실시하지 않은 실시간자료를 이용한 수치실험도 실시하였다. 기상자료의 평균화 시간이 길어질수록 주풍성분인 동서 방향의 운동이 뚜렷해지고, 짧을수록 주풍의 법선 방향인 남북 운동이 명확하게 나타나며, 화산분출물을 가정한 입자의 확산 역시 동일한 특성이 나타난다. 상하층의 바람은 강도의 차이가 명확하고, 평준화 기간에 따른 영향이 다르게 나타나기 때문에 상층입자와 하층입자의 이동과 지상 침적이 다양하게 나타난다. 또한 한반도의 지상 침적은 방출고도 2 km 이하의 입자가 주로 영향을 미친다. 따라서 기상자료의 평균화 시간 간격이 화산분출물의 지상 침적을 결정하는 하나의 요인으로 작용하기 때문에, 확산 실험 전에 적절한 기상자료의 시간평균을 결정할 필요가 있다.

Keywords

References

  1. 소원주, 윤성효, 1999, 백두산 화산의 홀로세 대분화 연구: 개관. 한국지구과학회지, 20, 534-543.
  2. 윤성효, 히로미추 타니구치, 하이첸 웨이, 지아치 류, 2007, 백두산 화산위기. 대한자원 환경지질학회 2007년 춘계대회 논문초록집, 130-132.
  3. 윤준희, 서은경, 박영산, 김학성, 2010, 종관 바람 관측 자료를 이용한 북한 지역의 풍력자원 분석. 한국지구과학회지, 31, 225-233. https://doi.org/10.5467/JKESS.2010.31.3.225
  4. 이순환, 이화운, 김유근, 2002, 복잡지형에서 도시화에 따른 대기오염 확산에 관한 시뮬레이션. 한국대기환경학회지, 18, 67-83.
  5. 이순환, 이화운, 김동혁, 김민정, 김현구, 2009, 한반도 풍력 자원지도의 공간해상도가 풍력자원 예측 정확도에 미치는 영향에 관한 수치연구. 한국환경과학회지, 18, 885-897.
  6. 이화운, 이현미, 이순환, 최현정, 2010, 라그랑지안 입자확산모델을 이용한 광양만 권역에서의 공기괴 재순환 현상의 수치모의. 한국환경과학회지, 19, 157-170.
  7. 한국학중앙연구원, 2011, http://www.aks.ac.kr/ (검색일: 2011.05.25)
  8. Bitar, L., Duck, T.J., Kristiansen, N.I., Stohl, A., and Beauchamp, S., 2010, Lidar observations of Kasatochi volcano aerosols in the troposphere and stratosphere. Journal of Geophysical Research, 115, doi:10.1029/2009JD013650.
  9. Corradini, S., Merucci, L., and Folch, A., 2011, Volcanic Ash Cloud Properties: Comparison Between MODIS Satellite Retrievals and FALL3D Transport Model. Geoscience and Remote Sensing Letters, 8, 248-252. https://doi.org/10.1109/LGRS.2010.2064156
  10. Costa, A., Macedonio, G., and Folch, A., 2006, A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth and Planetary Science Letters, 241, 634-647. https://doi.org/10.1016/j.epsl.2005.11.019
  11. Gangalea, G., Pratab, A.j., and Clarissec, L., 2010, The infrared spectral signature of volcanic ash determined from high-spectral resolution satellite measurements. Remote Sensing of Environment, 114, 414-425. https://doi.org/10.1016/j.rse.2009.09.007
  12. Glaze, L.S. and Self, S., 1991, Ashfall dispersal for the 16 September 1986, eruption of Lascar, Chile, calculated by a turbulent diffusion model. Geophysical Research Letters, 18, 1237-1240. https://doi.org/10.1029/91GL01501
  13. Flentje, H., Claude, H., Elste, T., Gilge, S., Köhler, U., Plass-Dülmer, C., Steinbrecht, W., Thomas, W., Werner, A., and Fricke, W., 2010, The Eyjafjallajökull eruption in April 2010 - detection of volcanic plume using in-situ measurements, ozone sondes and lidar-ceilometer profiles. Atmospheric Chemistry and Physics, 10, 10085-10092. https://doi.org/10.5194/acp-10-10085-2010
  14. Furuta, T., Fujioka, K., and Arai, F., 1986, Widespread submarine tephras around Japan-Petrographic and chemical properties. Marine Geology, 72, 125-142. https://doi.org/10.1016/0025-3227(86)90103-9
  15. Glaze, L.S. and Self, S., 1991, Ashfall dispersal for the 16 September 1986, eruption of Lascar, Chile, calculated by a turbulent diffusion model. Geophysical Research Letters, 18, 1237-1240. https://doi.org/10.1029/91GL01501
  16. Jin, B. and Zhang, X., 1994, Researching volcanic geology in Changbai Mt, Northeast Korea. Nation Education Press, Changchun, China, 223 p.
  17. Kang, S.D. and Kimura, F., 1998, A numerical study on the Karman vortex generated by divergence of momentum flux in flow past an isolated mountain. Journal of Meteorological Society of Japan, 76, 925-935. https://doi.org/10.2151/jmsj1965.76.6_925
  18. Koo, H.S., Kim, H.D., Kang, S.D., and Shin, D.W., 2007, A Numerical Study on the Formation Mechanism of a Mesoscale Low during East-Asia Winter Monsoon. Journal of the Korean Earth Science Society, 613-619. https://doi.org/10.5467/JKESS.2007.28.5.613
  19. Machida, H. and Arai, F., 1983, Extensive ash falls in and around the Sea of Japan from large Quaternary eruptions. Journal of Volcanology Geothermal Research, 18, 151-164. https://doi.org/10.1016/0377-0273(83)90007-0
  20. Miller, T.P. and Casadevall, T.J., 2000, Volcanic ash hazards to aviation, Encyclopaedia of volcanoes. Academic press, San Diego, USA, 930 p.
  21. Prata, A.J., Carn, S.A., Stohl, A., and Kerkmann, J., 2007, Long range transport and fate of a stratospheric volcanic cloud from Soufrie`re Hills volcano, Montserrat. Atmosphere Chemistry and Physics, 7, 5093-5103. https://doi.org/10.5194/acp-7-5093-2007
  22. Schumann, U., Weinzierl, B., Reitebuch, O., Schlager, H., Minikin, A., Forster, C., Baumann, R., Sailer, T., Graf, K., Mannstein, H., Voigt, C., Rahm, S., Simmet, R., Scheibe, M., Lichtenstern, M., Stock, P., Rüba, H., Schäuble, D., Tafferner, A., Rautenhaus, M., Gerz, T., Ziereis, H., Krautstrunk, M., Mallaun, C., Gayet, J.-F., Lieke, K., Kandler, K., Ebert, M., Weinbruch, S., Stohl, A., Gasteiger, J., Olafsson, H., and Sturm, K., 2010, Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010. Atmospheric Chemistry and Physics Discussions, 10, 22131-22218. https://doi.org/10.5194/acpd-10-22131-2010
  23. Simkin, T. and Siebert, L., 1994, Volcanoes of the World. Geoscience Press, Washington DC, USA, 349 p.
  24. Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, M., Duda, M.G., Huang, X.Y., Wang, W., and Powers, J.G., 2008, A description of the advanced research WRF version 3. NCAR technical note, NCAR/TNu2013475+STR, 123 p.
  25. Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G., 2005, Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmospheric Chemistry and Physics, 5, 2461-2474. https://doi.org/10.5194/acp-5-2461-2005
  26. Suzuki, T., 1983, A theoretical model for dispersion of tephra. In Shimozuru, D. and Yokoyama, I. (ed.), Arc Volcanism: Physics and Tectonics. Terra Scientific Publishing Company, Tokyo, 95-113.
  27. Wiegnera, M., Gasteigera, J., $Gro{\ss}a$, S., Schnella, F., Freudenthalera, V., and Forkelb, R., 2011, Characterization of the Eyjafjallajokull ash-plume: Potential of lidar remote sensing. Physics and Chemistry of the Earth (now print).
  28. Witham, C.S., Hort, M.C., Potts, R., Servranckx, R., Husson, P., and Bonnardot, F., 2007, Comparison of VAAC atmospheric dispersion models using the 1 November 2004 Grimsvotn eruption. Meteorological Applications, 14, 27-38. https://doi.org/10.1002/met.3

Cited by

  1. Analysis of Unrest Signs of Activity at the Baegdusan Volcano vol.21, pp.1, 2012, https://doi.org/10.7854/JPSK.2012.21.1.001
  2. An Efficient Method to Estimate Land Surface Temperature Difference (LSTD) Using Landsat Satellite Images vol.29, pp.2, 2013, https://doi.org/10.7780/kjrs.2013.29.2.4
  3. Volcanological Interpretation of Historical Eruptions of Mt. Baekdusan Volcano vol.34, pp.6, 2013, https://doi.org/10.5467/JKESS.2013.34.6.456
  4. A Preliminary Study for Predicting a Damage Range of Pyroclastic Flows, Lahars, and Volcanic Flood caused by Mt. Baekdusan Eruption vol.34, pp.6, 2013, https://doi.org/10.5467/JKESS.2013.34.6.479
  5. Application of LAHARZ for Lahar Modeling in Mt. Baekdusan vol.34, pp.6, 2013, https://doi.org/10.5467/JKESS.2013.34.6.507
  6. Estimation of Economic Losses on the Agricultural Sector in Gangwon Province, Korea, Based on the Baekdusan Volcanic Ash Damage Scenario vol.34, pp.6, 2013, https://doi.org/10.5467/JKESS.2013.34.6.515
  7. Building Damage Functions Using Limited Available Data for Volcanic Ash Loss Estimation vol.34, pp.6, 2013, https://doi.org/10.5467/JKESS.2013.34.6.524
  8. Monitoring of the Volcanic Ash Using Satellite Observation and Trajectory Analysis Model vol.30, pp.1, 2014, https://doi.org/10.7780/kjrs.2014.30.1.2
  9. Predicting the extent of the volcanic ash dispersion using GOCI image and HYSPLIT model - A case study of the 17 Sep, 2013 eruption in SAKURAJIMA volcano - vol.30, pp.2, 2014, https://doi.org/10.7780/kjrs.2014.30.2.12
  10. Numerical Simulation of Volcanic Ash Dispersion and Deposition during 2011 Eruption of Mt. Kirishima vol.35, pp.4, 2014, https://doi.org/10.5467/JKESS.2014.35.4.237
  11. Selecting Hazardous Volcanoes that May Cause a Widespread Volcanic Ash Disaster to the Korean Peninsula vol.37, pp.6, 2016, https://doi.org/10.5467/JKESS.2016.37.6.346