DOI QR코드

DOI QR Code

Optimization Techniques for the Inverse Analysis of Service Boundary Conditions in a Porous Catalyst Substrate with Fluid-Structure Interaction Problems

유체 구조 상호작용 문제를 가진 다공성 촉매 담체에서 실동경계조건의 역문제 해석을 위한 최적화 기법

  • 백석흠 (동아대학교 기계공학과 BK21) ;
  • 조석수 (강원대학교 자동차공학과) ;
  • 김현수 (동아대학교 기계공학과)
  • Received : 2010.12.30
  • Accepted : 2011.07.22
  • Published : 2011.10.01

Abstract

This paper presents a solution to the inverse problem for the service boundary conditions of thermal-flow and structure analysis in a catalyst substrate. The exhaust-gas purification efficiency of a catalyst substrate is influenced by the shape parameter, catalyst ingredients and so on and is estimated by the thermal flow uniformity. The formulations of the inverse problem of obtaining the thermal-flow parameters (inlet temperature, velocity, heat of reaction, convective heat-transfer coefficient) and the direct problem of estimating from a given outlet temperature distribution are described. An experiment was designed and the response-surface optimization technique was used to solve the proposed inverse problem. The temperature distribution of the catalyst substrate was obtained by thermal-flow analysis for the predicted thermal-flow parameters. The thermal stress and durability assessments for the catalyst substrate were performed on the basis of this temperature distribution. The efficiency and accuracy of the inverse approach have been demonstrated through the achievement of good agreement between the thermal-flow response surface model and the results of experimental vehicle tests.

이 논문은 촉매 담체에서 열유동 및 구조해석의 실동경계조건에 대한 역문제 해법을 나타낸다. 촉매 담체의 배기가스 정화효율은 열유동 매개변수와 촉매 성분 등에 영향을 받고 열유동 균일도에 의해 평가된다. 역문제의 정식화-열유동 매개변수(입구 온도, 속도, 반응열, 대류열전달계수)를 얻고-와 직접 문제-주어진 출구 온도 분포로부터 평가-를 설명하였다. 실험계획법과 반응표면 최적화 기법은 제안된 역문제 해결을 위해 이용하였다. 촉매 담체의 온도 분포는 예측된 열유동 매개변수에 대한 열유동해석에 의해 얻었다. 열응력과 내구성 평가는 이 온도 분포에 기반해서 수행하였다. 역문제 접근 방법의 유효성과 정확성은 반응표면모델과 측정된 실차 시험과 좋은 일치를 달성함으로써 설명하였다.

Keywords

References

  1. Shamim, T., Shen, H., Sengupta, S., Son, S. and Adamczyk, A. A., 2002, "A Comprehensive Model to Predict Three-way Catalytic Converter Performance," ASME J. Eng. Gas Turbines Power, Vol. 124, No. 2, pp. 421-428. https://doi.org/10.1115/1.1424295
  2. Pontikakis, G. and Stamatelos, A., 2006, "Three-Dimensional Catalytic Regeneration Modeling of SiC Diesel Particulate Filters," ASME J. Eng. Gas Turbines Power, Vol. 128, No. 4, pp. 421-433. https://doi.org/10.1115/1.2130732
  3. Gulati, S. T., 1983, "Thermal Stresses in Ceramic Wall Flow Diesel Filters," SAE Paper No. 830079.
  4. Gulati, S. T., 1985, "Long-Term Durability of Ceramic Honeycombs for Automotive Emissions Control," SAE Paper No. 850130.
  5. Gulati, S. T. and Sherwood, D. L., 1991, "Dynamic Fatigue Data for Cordierite Ceramic Wall-Flow Diesel Filters," SAE Tech. Paper No. 910135.
  6. Baek, S. Cho, S. S., Shin, S. G. and Joo, W. S., 2006, "Size Effect on the Modulus of Rupture in Automotive Ceramic Monolithic Substrate using Optimization and Response Surface Method," Trans. of the KSME(A), Vol. 30, No. 11, pp. 1392-1400. https://doi.org/10.3795/KSME-A.2006.30.11.1392
  7. Baek, S. H., Kim, S. Y., Seung, S. S., Yang, H., Joo, W. S. and Cho, S. S., 2007, "Experimental Estimation of Thermal Durability in Ceramic Catalyst Supports for Passenger Car," Trans. of the KSME(A), Vol. 31, No. 12, pp. 1157-1164. https://doi.org/10.3795/KSME-A.2007.31.12.1157
  8. Hayasaka, Y., Sakurai, S. and Takehara, I., 2002, "A Method to Estimate Service Boundary Conditions for Hot-Gas-Path Components of a Gas Turbine by Using a Design of Experiments," Trans. of the JSME(A), Vol. 68-671, No. 7, pp. 145-150.
  9. Baek, S. H., Choi, H. J., Kim, K. H. and Cho, S. S., 2010, "Identification of Thermal Flow Boundary Conditions for Three-way Catalytic Converter Using Optimization Techniques," Trans. of KAIS, Vol. 11, No. 9, pp. 3125--3134. https://doi.org/10.5762/KAIS.2010.11.9.3125
  10. Castillo, E. D., Montgomery, D. C. and McCarville, D. R. 1996, "Modified Desirability Functions for Multiple Response Optimization," J. Qual. Technol., Vol. 28, pp. 337-345.
  11. ANSYS, 2007, ANSYS Theory Reference Release 11.0, SAS IP, Inc.
  12. ANSYS CFX, 2007, User Manual Release 11.0, SAS IP, Inc.
  13. Barth, T. J. and Jesperson, D. C., 1989, "The Design and Application of Upwind Schemes on Unstructured Meshes," AIAA J., Vol. 89, No. 89-0366, pp. 1-12.
  14. Menter, F. R., 1994, "Two-equation Dddy-viscosity Turbulence Models for Engineering Applications," AIAA J., Vol. 32, No. 8, pp. 1598-1605. https://doi.org/10.2514/3.12149
  15. Baek, S. H., Park, J. S., Kim, M. G. and Cho, S. S., 2010, "A Study on Thermal Shock of Ceramic Monolitic Substrate," Trans. of the KSME(A), Vol. 34, No. 2, pp. 129-138. https://doi.org/10.3795/KSME-A.2010.34.2.129
  16. Baek, S. H. and Cho, S. S., 2011, "An Effective Approach of Equivalent Elastic Method for Three-Dimensional Finite Element Analysis of Ceramic Honeycomb Substrates," Trans. of the KSME(A), Vol. 35, No. 3, pp. 223-233. https://doi.org/10.3795/KSME-A.2011.35.3.223
  17. Baek, S. H., Cho, S. S., Kim, H. S. and Joo, W. S., 2006, "Trade-off Analysis in Multi-objective Optimization Using Chebyshev Orthogonal Polynomials," J. Mech. Sci. Technol., Vol. 20, No. 3, pp. 366-375. https://doi.org/10.1007/BF02917519
  18. Baek, S. H., Cho, S. S. and Joo, W. S., 2009, "Response Surface Approximation for Fatigue Life Prediction and Its Application to Multi-Criteria Optimization With a Priori Preference Information," Trans. of the KSME(A), Vol. 33, No. 2, pp. 114-126. https://doi.org/10.3795/KSME-A.2009.33.2.114
  19. Design-Expert Version 6, 2001, User Guide: Manual with tutorials, Stat-Ease, Inc.
  20. Helfinstine, J. D. and Gulati, S. T., 1985, "High Temperature Fatigue in Ceramic Honeycomb Catalyst Supports," SAE Paper No. 852100.
  21. Gulati, S. T., Williamson, B., Nunan, J. and Anderson, K., 1998, "Fatigue and Performance Data for Advanced Thin Wall Ceramic Catalysts," SAE Tech. Paper No. 980670.
  22. Baek, S. H. and Cho, S. S., 2010, "Comparison of Experimental and Numerical Analysis for Durability Design Criteria in Ceramic Catalyst Substrate," J. KSPE, Vol. 27, No. 9, pp. 58-66.