DOI QR코드

DOI QR Code

Antioxidative and Inhibitory Activities on Tyrosinase of Hippophae rhamnoides Leaf Extracts

비타민나무 잎 추출물의 항산화 및 타이로시네이즈 저해활성

  • Kim, Jung-Eun (Department of Fine Chemistry, and Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Chae, Kyo-Young (Department of Fine Chemistry, and Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Park, Soo-Nam (Department of Fine Chemistry, and Cosmetic R&D Center, Seoul National University of Science and Technology)
  • 김정은 (서울과학기술대학교 자연생명과학대학 정밀화학과 나노바이오화장품연구실, 화장품종합기술연구소) ;
  • 채교영 (서울과학기술대학교 자연생명과학대학 정밀화학과 나노바이오화장품연구실, 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 자연생명과학대학 정밀화학과 나노바이오화장품연구실, 화장품종합기술연구소)
  • Received : 2011.09.09
  • Accepted : 2011.09.15
  • Published : 2011.09.30

Abstract

In this study, the antioxidative and inhibitory effects on tyrosinase and elastase of Hippophae rhamnoides (H. rhamnoides) leaf extracts were investigated. The ethyl acetate fraction of H. rhamnoides extracts showed more effective free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activity ($FSC_{50}$ = 4.68 ${\mu}g$/mL). Reactive oxygen species (ROS) scavenging activity ($OSC_{50}$) of the aglycone fraction in the luminol-dependent $Fe^{3+}$-EDTA/$H_2O_2$ system was 0.19 ${\mu}g$/mL. The aglycone fraction exhibited more prominent cellular protective effects (${\tau}_{50}$, 133.3 min at 10 ${\mu}g$/mL) in the $^1O_2$-induced photohemolysis of human erythrocytes. The inhibitory effect ($IC_{50}$) of the aglycone fraction on tyrosinase was 54.86 ${\mu}g$/mL, and more effective than arbutin known as whitening agent. These results indicate that fractions of Hippophae rhamnoides extract can be used as antioxidants in biological system, particulaly skin exposed to UV radiation by quenching and/or scavenging $^1O_2$ and other ROS, and protecting cellular membranes against ROS.

본 연구에서는 비타민나무 잎 추출물의 항산화 활성과 tyrosinase 및 elastase 저해 활성에 관한 연구를 실시하였다. 비타민나무 잎 추출물의 에틸아세테이트 분획은 우수한 free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) 소거활성($FSC_{50}$ = 4.68 ${\mu}g$/mL)을 나타내었다. Luminol-의존성 화학발광법을 이용한 $Fe^{3+}$-EDTA/$H_2O_2$계에서 생성된 활성 산소종(reactive oxygen species, ROS)에 대한 아글리콘 분획의 총항산화능($OSC_{50}$)은 0.19 ${\mu}g$/mL이었다. 비타민나무잎 추출물에 대하여 $^1O_2$으로 유도된 사람 적혈구의 광용혈 실험 결과 아글리콘 분획은 10 ${\mu}g$/mL의 낮은 농도에서 ${\tau}_{50}$이 133.3 min으로 매우 큰 세포 보호 효과를 나타내었다. 비타민나무 추출물 아글리콘 분획의 tyrosinase 저해활성($IC_{50}$)은 54.86 ${\mu}g$/mL로, 미백제로 알려진 arbutin보다도 큰 활성을 나타내었다. 이상의 결과들은 비타민나무 잎 추출물이 $^1O_2$ 혹은 다른 ROS를 소광시키거나 소거함으로써, 그리고 ROS에 대항하여 세포막을 보호함으로써, 생체계 특히 태양 자외선에 노출된 피부에서 항산화제로서 작용할 수 있음을 가리키며, 화장품 소재로서의 응용 가능성이 있음을 확인하였다.

Keywords

References

  1. F. Afaq, V. M. Adhami, and H. Mukhtar, Photochemoprevention of ultraviolet B signalling and photocarcinogenesis, Mutat. Res., 571, 153 (2005). https://doi.org/10.1016/j.mrfmmm.2004.07.019
  2. M. A. Bachelor and G. T. Bowden, UVA-mediated activation of signaling pathways involved in skin tumor promotion and progression, Semin. Cancer Biol., 14, 131 (2004). https://doi.org/10.1016/j.semcancer.2003.09.017
  3. V. M. Adhami, D. M. Syed, N. Khan, and F. Afaq, Phytochemicals for prevention of solar ultraviolet radiation induced damages, Photochem. Photobiol., 84, 489 (2008). https://doi.org/10.1111/j.1751-1097.2007.00293.x
  4. F. Afaq and H. Mukhtar, Botanical antioxidants in the prevention of photocarcinogenesis and photoaging, Exp. Dermatol., 15, 678 (2006). https://doi.org/10.1111/j.1600-0625.2006.00466.x
  5. G. T. Bowden, Prevention of non-melanoma skin cancer by targeting ultraviolet-B-light signalling, Nat. Rev. Cancer., 4, 23 (2004). https://doi.org/10.1038/nrc1253
  6. S. N. Park, Antioxidative properties of baicalein, component from Scutellaria baicalensis Georgi and its application to cosmetics(I), J. Korean Ind. Eng. Chem., 14(5), 657 (2003).
  7. S. N. Park, Protective effect of isoflavone, genistein from soybean on singlet oxygen induced photochmolysis of human erythrocytes, Korean. J. Food Sci. Technol., 35(3), 510 (2003).
  8. K. Scharffetter-kochanek, Photoaging of the connective tissue of skin : Its prevention and therapy, antioxidants in disease mechanism and therapy, ed. H. Sies, Academic Press, California, 8, 639 (1997).
  9. R. M. Tyrrell and M. Pidoux, Singlet oxygen involvement in the inactivation of cultured human fibroblasts by UVA (334 nm, 365 nm) and nearvisible (405 nm) radiations, Photochem. Photobiol., 49, 407 (1989). https://doi.org/10.1111/j.1751-1097.1989.tb09187.x
  10. G. F. Vile and R. M Tyrrell, UVA radiation-induced oxidative damage to lipids and proteins in vitro and in human skin fibroblasts is dependent on iron and singlet oxygen, Free Radical Biology & Medicine, 18, 721 (1995). https://doi.org/10.1016/0891-5849(94)00192-M
  11. K. Scharffetter-Kochanek, M. Wlaschek, K. Briviba, and H. Sies, Singlet oxygen induces collagenase expression in human skin fibroblasts, FEBS Lett., 331, 304 (1993). https://doi.org/10.1016/0014-5793(93)80357-Z
  12. M. Wlaschek, K. Briviba, G. P. stricklin, H. Sies, and K, Singlet oxygen may mediate the ultraviolet A-induced synthesis of interstitial collagenase, Scharffetter-Kochanek, J. Invest. Dermatol., 104, 194 (1995). https://doi.org/10.1111/1523-1747.ep12612751
  13. J. W. Choi, S. I. Kim, J. Y. Kim, H. J. Yang, K. H. Lee, and S. N. Park, Antioxidative and cellular protective effects of Jeju native plant extracts against reactive oxygen species (I), J. Soc. Cosmet. Scientists Korea, 32, 181 (2006).
  14. H. J. Yang and S. N Park, Evaluation of antioxidant potentail of extract/fractions of Equisetum arvense (I), J. Soc. Cosmet. Scientists Korea, 33, 61 (2007).
  15. H. J. Yang and S. N. Park, Component analysis and study on anti-elastase activity of Equisetum arvense extracts (II), J. Soc. Cosmet. Scientists Korea, 33, 139 (2007).
  16. S. M. Jeon, S. I. Kim, J. Y. Ahn, and S. N. Park, Antioxidative properties of extract/fraction of Suaeda asparagoides and Salicornia herbacea extracts (I), J. Soc. Cosmet. Scientists Korea, 33, 145 (2007).
  17. J. Y. Kim, H. J. Yang, K. H. Le, S. M. Jeon, Y. J. Ahn, B. R. Won, and S. N. Park, Antioxidative and cellular protective effects of Jeju native plant extracts against reactive oxygen species (I), J. Soc. Cosmet. Scientists Korea, 32, 181 (2006).
  18. K. M. Kim, M. H. Park, K. H. Kim, S. H. Im, Y. H. Park, and Y. N. Kim, Analysis of chemical composition and in vitro anti-oxidant properties of extracts from sea buckthorn, J. Appl. Boil. Chem., 52(2), 58 (2009). https://doi.org/10.3839/jabc.2009.011
  19. A. S. Chauhan, P. S. Negi, and R. S. Ramteke, Antioxidant and antibacterial activities of aqueous extract of seabuckthorn (Hippophae rhamnoides L.) seeds, Fitoterapia, 78, 590 (2007). https://doi.org/10.1016/j.fitote.2007.06.004
  20. Y. Padwad, L. Ganju, and M. Jain, Effect of leaf extract of seabuckthorn on lipopolysaccharide induced inflammatory response in murine macrophages, Int Immunopharmacol, 6, 46 (2006). https://doi.org/10.1016/j.intimp.2005.07.015
  21. T. Y. G. Tiffany, C. Stefan, and H. Arnie, Effect of drying on the nutraceutical quality of seabuckthorn (Hippophae rhamnoides L. sse. sinensis) leaves, J. Food. Sci., 70, 514 (2005).
  22. J. S. Kim, C. Y. Yu, and M. J. Kim, Phamalogical effect and component of sea buckthorn (Hippophae rhamnoides L.), J. Plant Biotechnol., 37, 47 (2010). https://doi.org/10.5010/JPB.2010.37.1.047