DOI QR코드

DOI QR Code

Effect of Reaction Temperature on the Geometry of Carbon Coils Formed by SF6 Flow Incorporation in C2H2 and H2 Source Gases

SF6-C2H2-H2 기체에 의해 생성된 탄소 코일 기하구조의 반응온도 효과

  • Kim, Sung-Hoon (Department of Engineering in Energy & Applied Chemistry, Silla University)
  • 김성훈 (신라대학교 에너지응용화학과)
  • Received : 2011.12.26
  • Accepted : 2012.01.27
  • Published : 2012.01.30

Abstract

Carbon coils could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and $H_2$ as source gases and SF6 as an additive gas under thermal chemical vapor deposition system. The geometries of as-grown carbon materials were investigated with increasing the reaction temperature as the increment of $25^{\circ}C$ from $650^{\circ}C$ up to $800^{\circ}C$. At $650^{\circ}C$, the embryos for carbon coils were formed. With increasing the reaction temperature to $700^{\circ}C$, the coil-type geometries were developed. Further increasing the reaction temperature to $775^{\circ}C$, the development of wave-like nano-sized coils, instead of nano-sized coils, and occasional appearance of micro-sized carbon coils could be observed. Fluorine in $SF_6$ additive may shrink the micro-sized coil diameter via the reduction of Ni catalyst size by fluorine's etching role. Finally, the preparation of the micro-sized carbon coils having the smaller coil diameters, compared with the previously reported ones, could be possible using $SF_6$ additive.

니켈촉매 막을 증착시킨 산화규소 기판위에 아세틸렌기체와 수소기체를 원료로, 육불화황기체를 첨가기체로 열화학기상증착 시스템하에서 탄소코일을 증착하였다. 반응온도를 $650^{\circ}C$에서 $800^{\circ}C$까지 증가시키면서 증착된 탄소 코일의 기하구조를 조사하였다. $650^{\circ}C$에서는 주로 탄소나노필라멘트 형성의 전단계가 나타났으며, 반응온도가 증가하자($700^{\circ}C$) 나노 크기의 코일들이 나타났다. $775^{\circ}C$로 반응온도를 더욱 증가시키자, 파도물결과 같은 나노 코일들이 성장되었으며, 간혹 마이크로 크기의 코일들도 나타났다. 육불화황에 첨가된 불소의 에칭효과로 니켈 촉매의 크기를 줄일 수 있을 것으로 여겨지며, 따라서 육불화항 첨가기체의 사용으로 기존에 보고된 것보다 작은 크기의 직경을 갖는 마이크로 탄소 코일을 얻을 수 있었다.

Keywords

References

  1. W. R. Davis, R. J. Slawson, and G. R. Rigby, Nature, 171, 756 (1953).
  2. S. Ihara and S. Itoh, Carbon 33, 931. (1995) https://doi.org/10.1016/0008-6223(95)00022-6
  3. A. L. M. Reddy, R. I. Jafri, N. Jha, S. Ramaprabhu, and P. M. Ajayan J. Mater. Chem, 21, 16103 (2011). https://doi.org/10.1039/c1jm12580j
  4. S. Ihara and S. Itoh, Carbon, 33, 931 (1995). https://doi.org/10.1016/0008-6223(95)00022-6
  5. L. J. Pan, T. Hayashida, M. Zhang, and Y. Nakayama, Jpn. J. Appl. Phys. 40, L235 (2001). https://doi.org/10.1143/JJAP.40.L235
  6. S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, and J. B. Nagy, Science, 265,635 (1994). https://doi.org/10.1126/science.265.5172.635
  7. S. Yang, X. Chen, S. Motojima, and H. Iwanaga, J.Nanosci. Nanotechnol. 4, 167 (2007). https://doi.org/10.1166/jnn.2004.047
  8. A. Addamiano. J Cryst Growth, 617, 617 (1982).
  9. S. Motojima, T. Hamamoto, and H. Iwanaga. J Cryst Growth, 158, 79 (1996). https://doi.org/10.1016/0022-0248(95)00320-7
  10. S. Motojima, S. Ueno, T. Hattori, and K. Goto. Appl Phys Lett, 54, 1001 (1989). https://doi.org/10.1063/1.101422
  11. S. Motojima, S. Ueno, T. Hattori, and H. Iwanaga. J Cryst Growth, 96, 383 (1989). https://doi.org/10.1016/0022-0248(89)90537-X
  12. S. Motojima, T. Yamana, T. Araki, and H. Iwanaga. J Electrochem Soc, 142, 3141 (1995). https://doi.org/10.1149/1.2048702
  13. U. Vogt, H. Hofmann, and V. Kramer. Key Eng Mater, 89-91, 29 (1994).
  14. K. Akagi, R. Tamura, and M. Tsukada, Phys. Rev. Lett. 74, 2307 (1995). https://doi.org/10.1103/PhysRevLett.74.2307
  15. M. Zang and Y. Nakayama, and L. J. Pan, Jpn. J. Appl. Phys. 39, L1242 (2000). https://doi.org/10.1143/JJAP.39.L1242
  16. R. Kanada, L. J. Pan, S. Akita, N. Okazaki, K. Hirahara, and Y. Nakayama, Jpn. J. Appl. Phys. 47, 1949 (2008). https://doi.org/10.1143/JJAP.47.1949
  17. W. Wang, K. Yang, J. Gaillard, P. R. Bandaru, and A. M. Rao, Advanced Materials 20, 179 (2008). https://doi.org/10.1002/adma.200701143
  18. K. Hernadi, A. Fonseca, J. B. Nagy, D. Bernaerts, and A. A. Lucas, Carbon 34, 1249 (1996). https://doi.org/10.1016/0008-6223(96)00074-7
  19. W. In-Hwang, H. Yanagida, and S. Motojima, Mater. Letters 43, 11 (2000).
  20. S. Motojima, Y. Itoh, S. Asakura, and H. Iwanaga, J. Mater. Sci. 30, 5049 (1995). https://doi.org/10.1007/BF00356048
  21. X. Chen and S. Motojima, J. Mater. Sci. 34, 5519 (1999) . https://doi.org/10.1023/A:1004768629799
  22. S. Motojima, S. Asakura, T. Kasemura, S. Takeuchi, and H. Iwanaga, Carbon 34, 289 (1996). https://doi.org/10.1016/0008-6223(95)00169-7
  23. S. Motojima, Y. Itoh, S. Asakura, and H. Iwanaga, J. Mater. Sci. 30, 5049 (1995). https://doi.org/10.1007/BF00356048
  24. X. Chen, T. Saito, M. Kusunoki, and S. Motojima, J. Mater. Res. 14, 4329 (1999). https://doi.org/10.1557/JMR.1999.0586
  25. X. Chen and S. Motojima, Carbon 37, 1817 (1999). https://doi.org/10.1016/S0008-6223(99)00054-8
  26. X. Chen and S. Motojima, J. Mater. Sci. 34, 5519 (1999). https://doi.org/10.1023/A:1004768629799
  27. S. Motojima, S. Asakura, T. Kasemura, S. Takeuchi, and H. Iwanaga, Carbon 34, 289 (1996). https://doi.org/10.1016/0008-6223(95)00169-7
  28. S. -H. Kim, J. Korean Vacuum. Soc. 20, 374 (2011). https://doi.org/10.5757/JKVS.2011.20.5.374
  29. M. Kawaguchi, K. Nozaki, S. Motojima, and H. Iwanaga, J. Cryst. Growth. 118, 309 (1992). https://doi.org/10.1016/0022-0248(92)90077-V

Cited by

  1. Effect of Gas Phase Cycling Modulation of C2H2/SF6Flows on the Formation of Carbon Coils vol.21, pp.3, 2012, https://doi.org/10.5757/JKVS.2012.21.3.178
  2. Synthesis of the Carbon Nano/micro Coils Applicable to the Catalyst Support to Hold the Tiny Catalyst Grain vol.22, pp.6, 2013, https://doi.org/10.5757/JKVS.2013.22.6.277