DOI QR코드

DOI QR Code

Scaling Methods for Icing Wind Tunnel Test

결빙 풍동시험을 위한 스케일링 기법 연구

  • 안영갑 (국방기술품질원 사천센터) ;
  • 명노신 (경상대학교 항공우주시스템공학과 및 항공기부품기술연구소)
  • Received : 2011.10.05
  • Accepted : 2012.01.13
  • Published : 2012.02.01

Abstract

In-flight icing remains as one of the most persistent hazards for aircraft operations. The effect of icing on aircraft performance and safety has to be evaluated during the development and airworthiness certification process. The scaling method is a procedure to determine the scaled test conditions in icing wind tunnels in order to produce the same result as when the reference model is exposed to the desired cloud conditions. In this study, a scaling program is developed to provide an easy-to-use tool to the aero-icing community. The Olsen and Ruff 4th methods are employed for this purpose and the velocity is calculated by matching the dimensionless Weber number. To validate the program, the results are compared with the NASA scaling results. The scaling examples based on FAR (Federal Aviation Regulation) Part 25 Appendix C are also presented. Finally, a validation study using a state-of-the-art icing simulation code FENSAP-ICE is presented.

비행 중 결빙은 항공기 운용에 위험한 상황을 초래하게 되며, 개발 및 감항 인증 과정중 성능과 안전에 미치는 영향이 평가되어야 한다. 평가를 위한 결빙 풍동시험에서 스케일링 기법은 실제와 동등한 수집율과 결빙량이 모사되는 대체시험 조건을 결정하는 기법이다. 본 논문에서는 Olsen 및 Ruff-IV 기법과 무차원 Weber 수를 일치시켜 속도를 계산하는 방법을 적용하여 연구자들이 쉽게 이용할 수 있도록 스케일링 프로그램을 개발하였다. 동일조건에서 수행된 NASA 스케일링 결과와 비교하여 프로그램을 검증하였다. 또한 FAR Part 25 Appendix C를 적용한 스케일링 사례를 제시하고 결빙코드 FENSAP-ICE를 이용하여 스케일링 기법을 검증하였다.

Keywords

References

  1. Olsen, W. and Newton, J., "Experimental and Analytical Evaluation of Existing Icing Scaling Laws," Unpublished Draft of NASA Technical Memorandum, 1986.
  2. Ingelman-Sundberg, M., Trunov, O. K., and Ivaniko, A., "Methods for Prediction of the Influence of Ice on Aircraft Flying Characteristics," Swedish-Soviet Working Group on Flight Safety, 6th Meeting, Report No. JR-1, 1977.
  3. Charpin, F. and Fasso, G., "Icing Testing in the Large Modane Wind Tunnel on Full Scale and Reduced Scale Models," NASA TM-75373, 1979.
  4. Armand, C., Charpin, F., Fasso, G. and LeClere, G., "Techniques and Facilities Used at the ONERA Modane Centre for Icing Tests," AGARD-AR-127, Appendix A6, 1978.
  5. Ruff, G. A., "Analysis and Verification of the Icing Scaling Equations," AEDC-TR-85-30, Vol 1 (Rev), 1986.
  6. 정성기, 명노신, 조태환, "항공기 결빙 예측을 위한 Eulerian 기반 액적 충돌 및 결빙 증식코드," 한국전산유체공학회지, 15권 2호, 페이지 71-78, 2010.
  7. 정성기, 이창훈, 신성민, 명노신, 조태환, 정훈화, 정재홍, "KC-100 항공기의 표면발생 Icing 형상 및 공력 영향성 연구," 한국항공우주학회지, 38권 6호, 페이지 530-536, 2010. https://doi.org/10.5139/JKSAS.2010.38.6.530
  8. Jung, S. K., Shin, S., Myong, R. S., Cho, T. H., "An Efficient CFD-Based Method for Aircraft Icing Simulation Using a Reduced Order Model," Journal of Mechanical Science and Technology, Vol. 25, No. 3, pp. 703-711, 2011. https://doi.org/10.1007/s12206-011-0118-4
  9. 정성기, 이창훈, 나그드위 수리야칸트, 명노신, 조태환, "효율적 결빙 시험을 위한 절단 익형 형상 연구," 한국항공우주학회지, 39권 6호, 페이 지 481-486, 2011. https://doi.org/10.5139/JKSAS.2011.39.6.481
  10. 손찬규, 오세종, 이관중, "자가 조직도와 분산분석을 활용한 결빙 형상과 외기 조건의 관 계 분석," 한국항공우주학회지, 39권 8호, 페이지 689-701, 2011.
  11. Anderson, D. N., "Manual of Scaling Methods" NASA/CR-2004-212875, 2004.
  12. Chen, S. C., "GLC 305 Icing Studies in NASA Glenn IRT," 1998.
  13. Anderson, D. N., Shin, J., "Characterization of Ice Roughness from Simulated Icing Encounters," AIAA-97-0052 & NASA TM 87184, 1997.
  14. Hansman, R. J., Jr., Turnock, S. R., "Investigation of Surface Water Behavior During Glaze Ice Accretion," J. Aircraft, Vol. 26, No. 2, pp. 140-147, 1989. https://doi.org/10.2514/3.45735
  15. Bartlett, C. S., "Icing Scaling Considerations for Aircraft Engine Testing," AIAA-88-0202, 1988.
  16. Bragg, M. B., "A Similarity Analysis of the Droplet Trajectory Equation," AIAA J., Vol. 20, No. 12, pp. 1681-1686, 1982. https://doi.org/10.2514/3.8004
  17. Langmuir, I., Blodgett, K. B., "A Mathematical Investigation of Water Droplet Trajectories," Army Air Forces Technical Report No. 5418, 1946.
  18. Wright, W. B., "Users Manual for the Improved NASA Lewis Ice Accretion Code, LEWICE 1.6," NASA CR 198355, 1995.
  19. Messinger, B. L., "Equilibrium Temperature of an Unheated Icing Surface as a Function of Airspeed," J. Aeron. Sci., Vol. 20 No. 1, pp. 29-42, 1953. https://doi.org/10.2514/8.2520
  20. Anderson, D. N., "Methods for Scaling Icing Test Conditions," AIAA-95-0540 & NASA TM 106827, 1995.
  21. Anderson, D. N., "Further Evaluation of Traditional Icing Scaling Methods," AIAA-96-0633 & NASA TM 104140, 1996.
  22. Anderson, D. N., Ruff, Gary, A., "Evaluation of Methods to Select Scale Velocities in Icing Scaling Tests," AIAA-99-0244, 1999.
  23. Bilanin, A. J., Anderson, D. N., "Ice Accretion with Varying Surface Tension," AIAA-95-0538 & NASA TM 106826, 1995.
  24. Anderson, D. N. and Ruff, G. A., "Scaling Methods for Simulating Aircraft In-Flight Icing Encounters," NASA TM 107538, 1997.
  25. Anderson, D. N., "Acceptable Tolerances for Matching Icing Similarity Parameters in Scaling Applications," AIAA-2001-0832, 2001.
  26. McAdams, W. H., Heat Transmission, McGraw-Hill, New York, 1954.
  27. Kreith, F., Principles of Heat Transfer, International Textbook Co., Scranton, 1958.
  28. NTI Solutions User Manual, Newmerical Technologies International, 2008.

Cited by

  1. Investigation of the Performance of Anti-Icing System of a Rotorcraft Engine Air Intake vol.41, pp.4, 2013, https://doi.org/10.5139/JKSAS.2013.41.4.253
  2. COMPUTATIONAL PREDICTION OF ICING EFFECTS ON AERODYNAMIC CHARACTERISTICS OF A WIND TURBINE BLADE vol.18, pp.3, 2013, https://doi.org/10.6112/kscfe.2013.18.3.051
  3. A Study on the Parameters for Icing Airworthiness Flight Tests of Surion Military Helicopter vol.43, pp.6, 2015, https://doi.org/10.5139/JKSAS.2015.43.6.526