DOI QR코드

DOI QR Code

A Study on Optimal Time Distribution of Extreme Rainfall Using Minutely Rainfall Data: A Case Study of Seoul

분단위 강우자료를 이용한 극치강우의 최적 시간분포 연구: 서울지점을 중심으로

  • Yoon, Sun-Kwon (Dept. of Civil and Environ. Eng., KAIST Institute for Urban Space and Systems) ;
  • Kim, Jong-Suk (School of Energy and Environment, City University of Hong Kong) ;
  • Moon, Young-Il (Dept. of Civil Eng., The University of Seoul)
  • 윤선권 (한국과학기술원 건설 및 환경공학과 미래도시연구소) ;
  • 김종석 ;
  • 문영일 (서울시립대학교 공과대학 토목공학과)
  • Received : 2011.07.14
  • Accepted : 2012.01.06
  • Published : 2012.03.31

Abstract

In this study, we have developed an optimal time distribution model through extraction of peaks over threshold (POT) series. The median values for annual maximum rainfall dataset, which are obtained from the magnetic recording (MMR) and the automatic weather system(AWS) data at Seoul meteorological observatory, were used as the POT criteria. We also suggested the improved methodology for the time distribution of extreme rainfall compared to Huff method, which is widely used for time distributions of design rainfall. The Huff method did not consider changing in the shape of time distribution for each rainfall durations and rainfall criteria as total amount of rainfall for each rainfall events. This study have suggested an extracting methodology for rainfall events in each quartile based on interquartile range (IQR) matrix and selection for the mode quartile storm to determine the ranking cosidering weighting factors on minutely observation data. Finally, the optimal time distribution model in each rainfall duration was derived considering both data size and characteristics of distribution using kernel density function in extracted dimensionless unit rainfall hyetograph.

본 연구에서는 극치강우의 시간분포 연구를 위하여 서울지점 우량관측소의 자기기록지를 1분단위로 독취한 MMR(minutely data using the magnetic recording)자료와 최근 들어 관측을 시작한 AWS (automatic weather system) 분단위기상관측 자료를 이용하여 연최대치 계열의 중앙값을 기준으로 한 POT(peaks over threshold) 계열 추출을 통하여 강우의 최적 시간분포 모형을 개발하였다. 기존 Huff 방법에서의 최대 단점인 지속기간별 시간분포 변화 특성을 고려하지 못하는 점과 강우사상별 강우총량에 대한 기준강우량의 일괄적용 등의 문제를 개선하였으며, 분단위 관측자료의 가중치 적용을 통한 순위결정으로 최빈분위를 선택하고 IQR (interquartile range) matrix의 적용을 통한 Quartile별 호우사상을 추출하는 방법을 제안하였다. 마지막으로 추출된 분단위 무차원 단위우량주상도에 핵밀도함수를 적용하여 자료의 크기와 분포 특성을 고려한 지속기간별 최적 시간분포형을 유도하였다.

Keywords

References

  1. 국토해양부(2000). 지역적 설계강우의 시간적 분포. 수자원관리기법 개발연구조사 연구보고서, 한국건설기술연구원.
  2. 기상연구소(1998). 목표 시간율에 따른 국내 지역별 강우 강도분포예측연구. 정보통신 연구개발사업위탁연구 보고서, p. 81.
  3. 기상청(2004). 기후자료보존시스템 구축 2차년도 사업 완료보고서: 활용방안 조사서. 기상청, p. 47.
  4. 노재경, 이길춘(1992). "홍수빈도해석을 위한 통계학적 모형." 한국수자원학회논문집, 한국수자원학회, 제25권, 제2호, pp. 89-97.
  5. 박찬영외 3인(1981). "소유역의 설계우량 산정을 위한 강우형상 분석에 관한 연구", 한국수자원학회지, 한국수자원학회, 제14권, 제4호, pp. 13-18.
  6. 서병하, 강관원, 윤용남(1981). "도시하수도망의 수문학적 평가와 설계확률유량의 점대화 성향에 관한 연구(제1 보)." 한국수자원학회지, 한국수자원학회, 제14권, 제4호, pp. 27-33.
  7. 서승덕(1965). "폭우의 시간적분포에 관한 고찰." 한국농공학회지, 한국농공학회, 제7권, 제2호, pp. 792-797.
  8. 엄명진, 조원철, 허준행(2008). "GPD 모형 산정을 위한 부분시계열 자료의 임계값 산정방법 비교." 한국수자원학회논문집, 한국수자원학회, 제41권, 제5호, pp. 527- 544. https://doi.org/10.3741/JKWRA.2008.41.5.527
  9. 오태석, 문영일(2008). "고정시간과 임의시간에 따른 우리나라 연최대강우량의 환산계수 산정." 대한토목학회논문집, 대한토목학회, 제28권, 제5B호, pp. 515-524.
  10. 유철상, 박창열, 김경준, 전경수(2007). "모포마 분포를 적용한 분단위 강우강도-지속시간-재현기간 관계의 유도." 한국수자원학회논문집, 한국수자원학회, 제40권, 제8호, pp. 643-654. https://doi.org/10.3741/JKWRA.2007.40.8.643
  11. 윤용남, 장수형, 강성규, 박민석(2004). "설계홍수량 산정을 위한 적정 설계강우시간분포의 개발." 한국수자원학회학술발표회논문집, 한국수자원학회, pp. 313-317.
  12. 이근후(1983). 폭우의 시간적분포에 관한 연구. 박사학위논문, 서울대학교 농공학과.
  13. 이정규, 추현재(2006). "Huff의 4분위법을 이용한 지속기간별 연 최대치 강우의 시간분포 특성연구." 대한토목학회논문집, 대한토목학회, 제26권, 제5B호, pp. 519-528.
  14. 이정주, 권현한, 황규남(2010). "극치수문자료의 계절성 분석 개념 및 비정상성 빈도해석을 이용한 확률강수량 해석." 한국수자원학회논문집, 한국수자원학회, 제43권, 제8호, pp. 733-745. https://doi.org/10.3741/JKWRA.2010.43.8.733
  15. 장수형, 윤재영, 윤용남(2007). "Huff 강우시간분포방법의 개선방안 연구: I. Huff방법의 국내유역 적용성 검토." 한국수자원학회논문집, 한국수자원학회, 제39권, 제9호, pp. 767-777. https://doi.org/10.3741/JKWRA.2006.39.9.767
  16. 주진걸, 이정호, 조덕준, 전환돈, 김중훈(2007). "도시유역의 유출특성을 고려한 강우분포 모형의 개발." 한국수자원학회논문집, 한국수자원학회, 제40권, 제8호, pp. 655-663. https://doi.org/10.3741/JKWRA.2007.40.8.655
  17. 한국전자통신원(2001). 전국 지역별 분 강우강도 DB 구축 연구. 한국전자통신원, pp. 84.
  18. Adamowski, K., and Labatiuk, C. (1987). "Estimation of flood frequencies by a non-parametric density procedure." Hydrologic Frequency Modeling, pp. 97-106.
  19. Arnell, V., Harremoes, P., Jensen, M., Johansen, N. B., and Niemczynowicz, J. (1984). "Review of rainfall data application for design and analysis." Water Science & Technology, Vol. 16, No. 8-9, pp. 1-45.
  20. Clarke, J.A., R.D. de Paiva, and Uvo, C.B. (2009). "Comparison of methods for analysis of extremes when records are fragmented: A case study of using Amazon basin rainfall data." Journal of Hydrology, Vol. 368, No. 1-4, pp. 26-29. https://doi.org/10.1016/j.jhydrol.2009.01.025
  21. Horner, W.M., and Jens, S.W. (1942). "Surface runoff determination from rainfall without using coefficients." Transaction ASCE, Vol. 107, pp. 1039-1075.
  22. Huff, F.A. (1967). "Time Distribution of Rainfall in Heavy Storms." Water Resources Research, Vol. 3, No. 4, pp. 1007-1019. https://doi.org/10.1029/WR003i004p01007
  23. Huff, F.A. (1986). "Urban hydrology review." Bulletin of the American Meteorological Society, Vol. 67, No. 6, pp. 703-712.
  24. Keifer, C.J., and Chu, H.H. (1957). "Synthetic storm pattern for drainage design." Journal of Hydraulics Division, ASCE, Vol. 83, No. HY4, pp. 1-25.
  25. Knapp, H.V., and Terstriep, M.I. (1981). "Effect of basin rainfall estimates on dam safety design in illinois." Illinois State Water Survey Contract Report 253, pp. 57.
  26. Lall, U., Moon, Young-il., and Bosworth, K. (1993). "Kernel flood frequency estimators: bandwidth selection and kernel choice." Water Resources Research, Vol. 29, No. 4, pp. 1003-1015. https://doi.org/10.1029/92WR02466
  27. Madsen, H., Rasmussen, P.F., and Rosbjerg, D. (1997a). "Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events. 1. At-site modeling. Water Resources Research, Vol. 33, No. 4, pp. 747-757. https://doi.org/10.1029/96WR03848
  28. Madsen, H., Pearson, C.P., and Rosbjerg, D. (1997b). "Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events. 2. regional modeling. Water Resources Research, Vol. 33, No. 4, pp. 759-769. https://doi.org/10.1029/96WR03849
  29. Moon, Y.I., and Lall, U. (1994). "Kernel quantile function estimator for flood frequency analysis." Water Resources Research, Vol. 30, No. 11, pp. 3095-3103. https://doi.org/10.1029/94WR01217
  30. Ogrosky, H.O. (1964). "Hydrology of spillway design; Small structures-limited data." Journal of Hydraulics Division, ASCE, Vol. 90, No. HY3, pp. 295-310.
  31. Ordon, C.J. (1974). "Volume of storm water retention basins." Journal of the Environmental Engineering Division, ASCE, Vol. 10, No. EEY, pp. 1165-1177.
  32. Pilgrim, D.H., and Cordery, I. (1975). "Rainfall temporal pattern for design flood." Journal of Hydraulics Division, ASCE, Vol. 83, No. HY1, pp. 81-95.
  33. Schiff, L. (1943). "Classes and patterns of rainfall with reference to surface runoff, Transactions." American Geophysical Union, Vol. 24, pp. 438-452. https://doi.org/10.1029/TR024i002p00438
  34. Sheather, S.F., and Jones, M.C. (1991). "A reliable databased band width selection method for kernel density estimation." Journal of Royal Statistical Society, B., Vol. 53, No. 3, pp. 683-690.
  35. Soil Conservation Service. (1972). "Hydrology." SCS National Engineering Handbook, U.S. Department of Agriculture, Washington, DC, p. 110.
  36. Venables, W.N., Ripley, B.D. (2000). "Modern Applied Statistics with S-PLUS, 3rd ed." Springer, New York.
  37. Ward, A.B., Bridges, T., and Barfield, B. (1980). "An evaluation of hydrologic modeling techniques for determining a design storm hydrograph." Proc. International Symposium on Urban Storm Runoff, pp. 59-69.
  38. Yen, B.C., and Chow, V.T. (1977). "Feasibility study on research of local design storms." U.S. Department of Transportation, Federal Highway Administration, Washington, D.C., Report No. FHWA-RD-78-65.

Cited by

  1. Analysis of Extreme Rainfall Distribution Scenarios over the Landslide High Risk Zones in Urban Areas vol.58, pp.3, 2016, https://doi.org/10.5389/KSAE.2016.58.3.057
  2. Non-Parametric Low-Flow Frequency Analysis Using RCPs Scenario Data : A Case Study of the Gwangdong Storage Reservoir, Korea vol.34, pp.4, 2014, https://doi.org/10.12652/Ksce.2014.34.4.1125
  3. Analysis of the Temporal Distribution of Rainfall Using the Heavy Storm Distribution Method Reflecting Concentrated Duration Characteristics in Busan vol.18, pp.7, 2018, https://doi.org/10.9798/KOSHAM.2018.18.7.613