DOI QR코드

DOI QR Code

Analysis of Groundwater Use and Discharge in Water Curtain Cultivation Areas: Case Study of the Cheongweon and Chungju Areas

청원-충주지역 수막재배용 지하수 사용량 및 배출량 분석

  • Moon, Sang-Ho (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Ha, Kyoochul (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Kim, Yongcheol (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Yoon, Pilsun (Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 문상호 (한국지질자원연구원 지구환경연구본부) ;
  • 하규철 (한국지질자원연구원 지구환경연구본부) ;
  • 김용철 (한국지질자원연구원 지구환경연구본부) ;
  • 윤필선 (한국지질자원연구원 지구환경연구본부)
  • Received : 2012.10.31
  • Accepted : 2012.12.14
  • Published : 2012.12.31

Abstract

Korean agricultural areas that employ water curtain cultivation (WCC) have recently suffered extensive groundwater shortages due to an increase in the number of facilities. The primary focus of this study is to measure the daily groundwater use and discharge rates in the Cheongweon and Chungju pilot areas, while the second focus is to estimate the total amount of groundwater used in WCC areas nationwide in Korea. Taking into consideration several factors, including motor type, outflow abilities of wells, records of daily minimum temperatures below $0^{\circ}C$, and the number of running wells according to weather variations, we estimated that $53,138m^3/ha$ of groundwater had been used in the 4-hectare Cheongweon pilot area during the winter period of late 2011 through early 2012. On a prorated areal basis, we can calculate that the total groundwater used nationwide was 0.57 billion $m^3$ in WCC areas of $10,746m^2$. This value is equivalent to 33.7% of the total agricultural groundwater use (1.69 billion $m^3$) in Korea. During 9-22 February 2012, the daily water discharge rate in the 4-ha Cheongweon pilot area ranged from 2,079 to $2,628m^3$, averaging $2,341m^3$. Combining this value with meteorological records for 94 days with a daily minimum temperature below $0^{\circ}C$ results in an estimated groundwater volume of $54,990m^3/ha$ for the pilot area during the 2011-2012 winter period. The total amount of groundwater used nationwide in WCC areas would then be 0.59 billion $m^3$, equivalent to 34.9% of the total agricultural groundwater use in Korea. In the Chungju area, the groundwater discharge rate was estimated to be less than 805 $m^3$/ha. This value, combined with weather data for 108 days with a daily minimum temperature below $0^{\circ}C$ in this area, can be applied to infer that the total groundwater volume used in WCC areas nationwide is no more than 55% of the total agricultural groundwater use in Korea.

국내 수막재배지는 시설 증대로 인한 지하수 취수량 감소의 어려움을 겪고 있다. 이 연구는 이들 지역 중 청원-충주지역을 대상으로 지하수 이용량 및 배출량을 측정하고, 이를 토대로 국내 수막재배지에서의 지하수 이용량을 추정하였다. 대표 관정들의 모터사양과 1일 지하수 토출 능력과의 관계, 1일 최저 기온 $0^{\circ}C$ 이하의 기록 일수, 최저 기온 변화에 따른 모터 가동 상황 등을 토대로 하여, 청원지역에서 2011년~2012년 겨울철 수막재배에 이용된 지하수 이용량을 추정하면 1 ha 당 $53,138m^3$이 된다. 이에 의한 면적 대비 국내 수막재배지(10,746 ha)의 지하수 이용 총량은 약 5.7억 $m^3$이며, 이는 국내 농업용수 지하수 이용량 16.9억 $m^3$의 33.7%에 해당된다. 2012년 2월 9일부터 22일까지 면적 4 ha의 청원지역 배수로에서 측정한 1일 지하수 배출량은 $2,079{\sim}2,628m^3$ 범위(평균 $2,341m^3$)로서, 수막재배 면적 1 ha 당 1일 평균 지하수 배출량이 $585m^3$인 것으로 나타났다. 수막재배 일수 94일을 적용하면, 청원지역에서 2011년~2012년 겨울철에 수막재배에 이용된 지하수 이용량은 $54,990m^3/ha$이다. 이에 의한 면적 대비 국내 수막재배지의 지하수 이용 총량은 약 5.9억 $m^3$이며, 이는 전체 농업용수 지하수 이용량의 약 34.9%에 해당된다. 충주지역에서는 수막재배지 1 ha 당 1일 지하수 배출량이 $805m^3$ 미만일 것으로 추정되었다. 이 지역에서의 2011년~2012년 겨울철 수막재배 일수 108일을 적용하면, 면적 대비 국내 수막재배지의 지하수 이용량은 전체 농업용수 지하수 이용량의 55% 미만일 것으로 추정된다.

Keywords

References

  1. Banzhaf, S., Krein, A., and Scheytt, T., 2011, Investigative approaches to determine exchange processes in the hyporheic zone of a low permeability riverbank, Hydrogeology Journal, 19, 591-601. https://doi.org/10.1007/s10040-011-0707-4
  2. Cho, B. -W., Yun, U., Lee, B. -D. and Ko, K. -S., 2012, Hydrogeological characteristics of the Wangjeon-ri PCWC area, Nonsan-city, with an emphasis on water level variations, The Journal of Engineering Geology, 22, 195-205 (In Korea with English abstract). https://doi.org/10.9720/kseg.2012.22.2.195
  3. Chungcheong Daily News, http://www.ccdn.co.kr/, 2012-04-16 (reporter Lee, W.C. In Korean).
  4. Chungcheong Today, http://www.cctoday.co.kr/, 2010- 11-10 (reporter Kim, H.J. In Korean).
  5. Giap, T. V., 2003, Use of radon-222 as tracer to estimate groundwater infiltration velocity in a river bank area, Nuclear Science and Technology, 2, 12-17.
  6. Hamm, S. -Y., Cheong J. -Y., Ryu, S. M., Kim M. J. and Kim H. -S., 2002, Hydrogeological characteristics of bank storage area in Daesan-myeon, Changwon City, Korea, Jouranl of the Geological Society of Korea, 38, 595-610 (In Korea with English abstract).
  7. Korea Institute of Geoscience and Mineral Resources (KIGAM), 2009, Integrated technologies in securing and applying groundwater resources to cope with earth environmental changes, GP2009-009-01-2009 (1), 379p (In Korean).
  8. Korea Institute of Geoscience and Mineral Resources (KIGAM), 2010, Integrated technologies in securing and applying groundwater resources to cope with earth environmental changes, GP2009-009-01-2010 (2), 347p (In Korean).
  9. Korea Institute of Geoscience and Mineral Resources (KIGAM), 2011, Integrated technologies in securing and applying groundwater resources to cope with earth environmental changes, GP2009-009-01-2011 (3), 559p (In Korean).
  10. Korea Meteorological Administration (KMA), 2012, http://www.kma.go.kr, 2012-10-10 (In Korean).
  11. Lee, J. -H., Hamm, S. -Y., Lee, C. -M., Lee, J. -J., Kim, H. -S. and Kim, G. -B., 2012, Numerical simulation of groundwater system change in a riverside area due to the construction of an artificial structure, The Journal of Engineering Geology, 22, 263-274 (In Korean with English abstract). https://doi.org/10.9720/kseg.2012.3.263
  12. Ministry of Construction and Transportation (MOCT), 2007, Report on the general plan of groundwater management: 2007-2011, 404p (In Korean).
  13. OhmyNews, http://www.ohmynews.com, 2004-11-18 (reporter Kim, H.J. In Korea).
  14. Rural Development Administration (RDA), 2007, Techniques in water curtain cultivation of vinyl house, 88p (In Korean).
  15. Winter, T. C., 1999, Relation of streams, lakes, and wet lands to groundwater flow systems, Hydrogeology Journal, 7, 28-45. https://doi.org/10.1007/s100400050178
  16. Winter, T. C., Harvey, J. W., Franke, O. L. and Alley, W. M., 1998, Ground and surface water in a single resource, USGS Circ. 1139, 79p.

Cited by

  1. Water Quality in a Drainage System Discharging Groundwater from Sangdae-ri Water Curtain Cultivation Area near Musimcheon Stream, Cheongju, Korea vol.48, pp.5, 2015, https://doi.org/10.9719/EEG.2015.48.5.409
  2. Setup of Infiltration Galleries and Preliminary Test for Estimating Its Effectiveness in Sangdae-ri Water Curtain Cultivation Area of Cheongju, Korea vol.49, pp.6, 2016, https://doi.org/10.9719/EEG.2016.49.6.445
  3. Applications of geophysical approaches to characterize riverside alluvium and porous aquifers to a water curtain cultivation area vol.52, pp.4, 2016, https://doi.org/10.14770/jgsk.2016.52.4.475
  4. An Analysis of Groudwater Budget in a Water Curtain Cultivation Site vol.35, pp.6, 2015, https://doi.org/10.12652/Ksce.2015.35.6.1259
  5. Long-term groundwater budget analysis based on integrated hydrological model for water curtain cultivation site: Case study of Cheongweon, Korea vol.52, pp.3, 2016, https://doi.org/10.14770/jgsk.2016.52.3.201
  6. Analysis of Groundwater Variations using the Relationship Between Groundwater use and Daily Minimum Temperature in a Water Curtain Cultivation Site vol.24, pp.2, 2014, https://doi.org/10.9720/kseg.2014.2.217
  7. Quantification of seasonally variable water flux between aquifer and stream in the riparian zones with water curtain cultivation activities using numerical simulation vol.53, pp.2, 2017, https://doi.org/10.14770/jgsk.2017.53.2.277
  8. Impacts of Seasonal Pumping on Stream-Aquifer Interactions in Miryang, Korea vol.55, pp.6, 2017, https://doi.org/10.1111/gwat.12543
  9. Groundwater-Stream Water Interaction Induced by Water Curtain Cultivation Activity in Sangdae-ri Area of Cheongju, Korea vol.49, pp.2, 2016, https://doi.org/10.9719/EEG.2016.49.2.105
  10. Evaluation of optimal water flow and temperature in response to outdoor air temperature in plastic greenhouse with recirculated water curtain system vol.31, pp.6, 2017, https://doi.org/10.1007/s12206-017-0548-8
  11. Examination for Efficiency of Groundwater Artificial Recharge in Alluvial Aquifer Near Nakdong River of Changweon Area, Korea vol.47, pp.6, 2014, https://doi.org/10.9719/EEG.2014.47.6.611
  12. Monitoring of soil water content and infiltration rate by rainfall in a water curtain cultivation area vol.52, pp.3, 2016, https://doi.org/10.14770/jgsk.2016.52.3.221
  13. 순환식 수막하우스의 수온에 따른 플라스틱 온실 내 온도변화 분석 vol.24, pp.2, 2012, https://doi.org/10.12791/ksbec.2015.24.2.093
  14. 취수정에서 필터층이 미치는 영향에 대한 실험적 연구 vol.26, pp.3, 2012, https://doi.org/10.9720/kseg.2016.3.361
  15. 수막하우스의 유량 및 수온에 따른 열전달 특성 분석 vol.25, pp.4, 2012, https://doi.org/10.12791/ksbec.2016.25.4.270
  16. 산소/수소안정동위원소를이용한지하수-지표수연계성연구: 논산시왕전리수막 재배지역 사례 vol.51, pp.6, 2012, https://doi.org/10.9719/eeg.2018.51.6.567
  17. Water Budget Analysis Considering Surface Water-Groundwater Interactions in the Exploitation of Seasonally Varying Agricultural Groundwater vol.8, pp.2, 2012, https://doi.org/10.3390/hydrology8020060