DOI QR코드

DOI QR Code

Hydrochemistry and Distribution of Uranium and Radon in Groundwater of the Nonsan Area

논산지역 지하수중 우라늄과 라돈의 수리지질학적 특성과 정밀함량분포

  • Cho, Byeong Wook (Groundwater Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Moon Su (Soil and Groundwater Research Division, National Institute of Environmental Research) ;
  • Kim, Tae Seung (Soil and Groundwater Research Division, National Institute of Environmental Research) ;
  • Han, Jin Seok (Soil and Groundwater Research Division, National Institute of Environmental Research) ;
  • Yun, Uk (Groundwater Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Byeong Dae (Groundwater Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Hwang, Jae Hong (Geological Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Choo, Chang Oh (Department of Geology, Kyungpook National University)
  • 조병욱 (한국지질자원연구원 지구환경연구본부) ;
  • 김문수 (국립환경과학원 토양지하수연구과) ;
  • 김태승 (국립환경과학원 토양지하수연구과) ;
  • 한진석 (국립환경과학원 토양지하수연구과) ;
  • 윤욱 (한국지질자원연구원 지구환경연구본부) ;
  • 이병대 (한국지질자원연구원 지구환경연구본부) ;
  • 황재홍 (한국지질자원연구원 국토지질연구본부) ;
  • 추창오 (경북대학교 지질학과)
  • Received : 2012.12.04
  • Accepted : 2012.12.21
  • Published : 2012.12.31

Abstract

A total of 100 groundwater samples were collected from the Nonsan area and the behaviors of uranium and radon as natural radionuclides were investigated with respect to other physicochemical components in the groundwater in order to understand their occurrence, properties, and origins. Radionuclide levels were used to construct detailed concentration maps. The concentration of uranium ranges from 0 to 378 ${\mu}g/L$, with an average of 8.57 ${\mu}g/L$, standard deviation of 42.88 ${\mu}g/L$, and median of 0.56 ${\mu}g/L$. The correlation coefficient between uranium and radon is 0.42, whereas these radionuclides show no relation with other physicochemical components in groundwater. It is noteworthy that the uranium level in most samples (97% of the samples) is less than 30 ${\mu}g/L$, where the bedrock of the aquifer is granite or complex rocks located along the boundary between granite and metamorphic rocks. In the Okcheon metamorphic belt, the uranium concentration of most groundwater is less than 1 ${\mu}g/L$. Radon levels varies from 128 to 9,140 pCi/L, with an average of 2,186 pCi/L, standard deviation of 1,725 pCi/L, and median of 1,805 pCi/L. High radon levels (> 4,000 pCi/L) are most common in regions of Jurassic granite, whereas low radon areas are found in regions of sedimentary rock. In conclusion, the distribution and occurrence of radionuclides are intimately related to the basic geological characteristics of the rocks in which the radiogenic minerals are primarily contained.

논산지역 100개의 지하수공을 대상으로 자연방사성 원소인 우라늄과 라돈 함량을 분석하고, 지하수의 주요 수질특성항목과의 관련성을 검토하여 이들의 산출실태와 원인을 연구하였다. 또한 이를 바탕으로 방사성물질 정밀함량분포도를 작성하였다. 우라늄은 불검출에서부터 최대 378 ${\mu}g/L$까지 범위가 넓게 나타난다. 평균치는 8.57 ${\mu}g/L$, 표준편차 42.88 ${\mu}g/L$, 중앙값은 0.56 ${\mu}g/L$으로서 매우 낮다. 우라늄과 라돈의 상관계수는 0.42로서 약간 관련성이 있으나, 이들과 기타 수질항목들과는 거의 무관하다. 지하수의 우라늄함량 분포도를 살펴보면 우라늄 함량은 97%가 30 ${\mu}g/L$ 이하의 값을 가지며, 30 ${\mu}g/L$ 이상인 지점의 지질은 주로 화강암 또는 화강암과 변성암의 경계 부분이며, 옥천대지역 지하수의 우라늄 함량은 대부분 1 ${\mu}g/L$ 이하로 낮게 나타났다. 논산지역 100개 지하수 전체의 라돈 함량은 128~9,140 pCi/L 범위, 평균 2,186 pCi/L, 표준편차 1,725 pCi/L, 중앙값은 1,805 pCi/L로 나타났다. 라돈 함량이 4,000 pCi/L 이상인 지역은 거의 쥬라기 화강암 지역에 있다. 전체적으로 라돈 함량이 높은 지역은 쥬라기 화강암지역이며, 낮은 지역은 퇴적암지역이다. 지하수중 방사성물질의 함량은 기본적으로 함우라늄광물을 배태하는 지질과 밀접한 관련을 가진다.

Keywords

References

  1. Banks, D., Frengstad, B., Midtgard, A. K., Krog, J. R., and Strand, T., 1998, The chemistry of Norweigian groundwaters: The distribution of radon, major and minor elements in 1604 crystalline bedrock groundwaters, Science of the Total Environment, 222, 71-91. https://doi.org/10.1016/S0048-9697(98)00291-5
  2. Cho, B. W., Choo, C. O., Kim, M. S., Lee, Y. J., Yun, U., and Lee, B. D., 2011, Uranium and radon concentrations in groundwater near the Icheon Granite, The Journal of Engineering Geology, 21, 259-269 (In Korean with English abstract). https://doi.org/10.9720/kseg.2011.21.3.259
  3. Cho, B. W., Sung, I. H., Cho, S. Y., and Park, S. K., 2007, A preliminary investigation of radon concentrations in groundwater of South Korea, Journal of Soil and Groundwater Env., 15, 98-104.
  4. Choo, C. O., 2002, Characteristics of uraniferous minerals in Daebo granite and significance of mineral species, Journal of Mineral Soc. Korea, 15, 11-21 (In Korean with English abstract).
  5. Cothern, C. R. and Rebers, P. A., 1990, Radon, radium and uranium in drinking water, Lewis publishers, 283p.
  6. Jeong, C. H., Kim, D. W., Kim, M. S., Lee, Y. J., Kim, T. S., Han, J. S., and Cho, B. W., 2012, Occurrence of natural radioactive materials in borehole groundwater and rock core in the Icheon Area, The Journal of Engineering Geology, 22, 95-111 (In Korean with English abstract). https://doi.org/10.9720/kseg.2012.22.1.095
  7. Jeong, C. H., Kim, M. S., Lee, Y. J., Han, J. S., Jang, H. G., and Cho, B. W., 2011, Hydrochemistry and occurrence of natural radioactive materials within borehole groundwater in the Cheongwon Area, The Journal of Engineering Geology, 21, 163-178 (In Korean with English abstract). https://doi.org/10.9720/kseg.2011.21.2.163
  8. Langmuir, D., 1997, Aqueous Environmental Geochemistry, Prentice Hall, 600p.
  9. Lowry, J. D., Hoxie, D. C., and Moreau, E., 1987, Extreme levels of 222Rn and U in a private water supply, Proceedings of the NWWA conference, 363-375.
  10. NIER, 2000, Study on the radionuclide concentrations in the groundwater (2). NIER Report. 323p (In Korean with English abstract).
  11. NIER, 2002, Study on the radionuclide concentrations in the groundwater (V), NIER Report, 357p (In Korean with English abstract).
  12. NIER, 2006, Study on the radionuclide concentration in the groundwater, NIER Report, 200p (In Korean with English abstract).
  13. NIER, 2009, A detailed study of the radionuclide concentration in the groundwater (II), NIER Report, 273p (In Korean with English abstract).
  14. Wathen, J.B., 1987, The effect of uranium sitting in twomica granites on uranium concentrations and radon activity in groundwater, Proceedings of the NWWA conference, 31-45p.

Cited by

  1. Characteristics of Occurrence and Distribution of Natural Radioactive Materials, Uranium and Radon in Groundwater of the Danyang Area vol.23, pp.4, 2013, https://doi.org/10.9720/kseg.2013.4.477
  2. A Study on Indoor Radon Concentration among Vulnerable Households in Korea vol.41, pp.2, 2015, https://doi.org/10.5668/JEHS.2015.41.2.61
  3. Occurrence of Radionuclides in Groundwater of Korea According to the Geological Condition vol.26, pp.1, 2016, https://doi.org/10.9720/kseg.2016.1.71
  4. Hydrogeochemical Characteristics, Occurrence, and Distribution of Natural Radioactive Materials (Uranium and Radon) in Groundwater of Gyeongnam and Gyeongbuk Provinces vol.24, pp.4, 2014, https://doi.org/10.9720/kseg.2014.4.551
  5. Study on Temporal Decay Characteristics of Naturally Occurring Radionuclides in Groudwater in Two Mica Granite Area vol.18, pp.4, 2013, https://doi.org/10.7857/JSGE.2013.18.4.019
  6. 지리정보시스템(GIS)을 이용한 토양지질도 분포와 실내라돈 상관성 연구 : 화천 및 장수의 사례를 근거로 vol.27, pp.4, 2012, https://doi.org/10.15269/jksoeh.2017.27.4.333
  7. 전라남도 일대 지하수 중에서 산출하는 자연방사성물질 우라늄과 라돈의 수리지구화학적 거동특징 vol.27, pp.4, 2012, https://doi.org/10.9720/kseg.2017.4.501
  8. 문경지역 지하수의 수리지화학 및 우라늄과 라돈의 산출 특성 vol.51, pp.6, 2012, https://doi.org/10.9719/eeg.2018.51.6.553
  9. Factors Controlling the Spatial and Temporal Variability in Groundwater 222Rn and U Levels vol.11, pp.9, 2012, https://doi.org/10.3390/w11091796
  10. 수리지화학적 추적자(222Rn, 주요용존이온)와 미생물 군집 분석을 통한 도심 지역 하천에서의 지하수 유출 특성 평가 vol.25, pp.2, 2012, https://doi.org/10.7857/jsge.2020.25.2.016
  11. A Study on the Characteristics of Indoor Radon Concentration in Water Curtain Cultivation Facilities vol.24, pp.2, 2012, https://doi.org/10.36278/jeaht.24.2.84