DOI QR코드

DOI QR Code

Analysis of Genomic Diversity of Endophytic Fungal Strains Isolated from the Roots of Suaeda japonica and S. maritima for the Restoration of Ecosystems in Buan Salt Marsh

부안갯벌 생태계 복원을 위한 칠면초와 해홍나물의 내생진균류에 대한 유전학적 다양성 분석

  • You, Young-Hyun (School of Life Sciences, College of National Sciences, Kyungpook National University) ;
  • Yoon, Hyeokjun (School of Life Sciences, College of National Sciences, Kyungpook National University) ;
  • Seo, Yeonggyo (School of Life Sciences, College of National Sciences, Kyungpook National University) ;
  • Kim, Miae (School of Life Sciences, College of National Sciences, Kyungpook National University) ;
  • Shin, Jae-Ho (School of Applied Biosciences, College of National Sciences, Kyungpook National University) ;
  • Lee, In-Jung (School of Applied Biosciences, College of National Sciences, Kyungpook National University) ;
  • Choo, Yeon-Sik (Department of Biology, College of National Sciences, Kyungpook National University) ;
  • Kim, Jong-Guk (School of Life Sciences, College of National Sciences, Kyungpook National University)
  • Received : 2012.07.30
  • Accepted : 2012.09.12
  • Published : 2012.12.28

Abstract

Eighty-four endophytic fungal strains were isolated and identified from the roots of halophytes collected in Buan salt marsh. All halophyte samples, such as Suaeda japonica, and Suaeda maritima were isolated from Buan salt marsh. All endophytic fungi isolated were analyzed by sequences of internal transcribed spacer (ITS) containing ITS1, 5.8s and ITS2 region. All endophytic fungi expressed that fungal strains belong to eight orders; Pleosporales (45%), Eurotiales (27%), Incertae sedis (11%), Dothideales (6%), Capnodiales (5%), Hypocreales (5%), and Agaricales (1%). All endophytic fungi were confirmed at the genus level of Ascomycota and Basidiomycota, containing Alternaria, Ascomycota, Aspergillus, Aureobasidium, Cladosporium, Eupenicillium, Fusarium, Gibberella, Hypocrea, Lewia, Macrophoma, Penicillium, Peyronellaea, Phoma, Pleospora, Pleosporales, Pseudeurotium, Schizophyllum, and Talaromyces. Alternaria (21%) and Penicillium (13%) were the dominant endophytic fungal strains. In this study, endophytic fungal strains analyzed from S. japonica and S. maritime, Alternaria (21%), and Penicillium (13%) of Pleosporales and Eurotiales in halophytes were very abundant.

부안갯벌에서 채집된 염생식물 칠면초와 해홍나물의 뿌리로부터 84종의 내생진균을 분리 및 동정하였다. 염생식물 샘플은 칠면초와 해홍나물이 부안갯벌로부터 분리되었다. 모든 내생진균류들은 ITS1, 5.8s와 ITS2를 포함하는 ITS영역의 서열에 의해 분석되었다. 내생진균류들은 Pleosporales (45%), Eurotiales (27%), Incertae sedis (11%), Dothideales (6%), Capnodiales (5%), Hypocreales (5%), 및 Agaricales (1%)에 해당하는 것을 확인하였다. 내생진균류는 자낭균문과 담자균문의 Alternaria속, Ascomycota속, Aspergillus속, Aureobasidium속, Cladosporium속, Eupenicillium속, Fusarium속, Gibberella속, Hocrea속, Lewia속, Macrophoma속, Penicillium속, Peyronellaea속, Phoma속, Pleospora속, Pleosporales속, Pseudeurotium속, Schizophyllum속, 그리고 Talaromyces속이 포함되는 것을 확인하였다. 그리고 alternaria (21%)와 Penicillium (13%)이 우점종인 것을 확인하였다. 본 연구에서는 칠면초와 해홍나물로부터 내생진균을 분리한 결과 Pleosporales 목과 Eurotiales 목의 Alternaria (21%)와 Penicillium (13%)이 가장 많이 분포하는 것으로 나타났다.

Keywords

References

  1. Arnold, E. A., L. C. Mejia, D. Kyllo, E. Rojas, Z. Maynard, N. Robbins, and E. A. Herre. 2003. Fungal endophytes limit pathogen damage in a tropical tree. Proc. Natl. Acid. Sci. USA. 100: 15649-15654. https://doi.org/10.1073/pnas.2533483100
  2. Chapman, V. J. 1974. Salt Marshes and Salt Deserts of the World. In Ecology of Halophytes. pp. 3-22. Academic Press, New York. USA.
  3. Ding, B., Y. Yin, F. Zhang, and Z. Li. 2011. Recovery and phylogenetic diversity of culturable fungi associated with marine sponges Clathrina luteoculcitella and Holoxea sp. in the South China Sea. Mar. Biotechnol. 13: 713-21. https://doi.org/10.1007/s10126-010-9333-8
  4. Gomes, N. C. M., D. F. R. Cleary, F. N. Pinto, C. Egas, A. Almeida, A. Cunha, L. C. S. Mendonça-Hagler, and K. Smalla. 2010. Taking root: enduring effect of rhizosphere bacterial colonization in mangroves. PLoS ONE 5: e14065. https://doi.org/10.1371/journal.pone.0014065
  5. Hamayun, M., S. A. Khan, M. A. Khan, A. L. Khan, S. M. Kang, S. K. Kim, G. J. Joo, and I. J. Lee. 2009. Gibberellin production by pure cultures of a new strain of Aspergillus fumigates. World J. Microbiol. Biotechnol. 25: 1785-1792. https://doi.org/10.1007/s11274-009-0078-3
  6. Khan, A. L., M. Hamayun, N. Ahmad, J. Hussain, S. M. Kang, Y. H. Kim, M. Adnan, D. S. Tang, M. Waqas, R. Radhakrishnan, Y. H. Hwang, and I. J. Lee. 2011. Salinity Stress Resistance Offered by Endophytic Fungal Interaction Between Penicillium minioluteum LHL09 and Glycine max. L. J Microbiol. Biotechnol. 21: 893-902. https://doi.org/10.4014/jmb.1103.03012
  7. Khan, A. L., M. Hamayun, S. M. Kang, Y. H. Kim, H. Y. Jung, J. H. Lee, and I. J. Lee, 2012. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol. 12: 3. https://doi.org/10.1186/1471-2180-12-3
  8. Kim, B. S., H. M. Oh, H. Kang, S. Park, and J. Chun. 2004. Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J. Microbiol. Biotechnol. 14: 205-211.
  9. Khan, S. A., M. Hamayun, S. O. Rim, I. J. Lee, J. C. Seu, Y. S. Choo, I. N. Jin, S. D. Kim, I. K. Lee, and J. G. Kim. 2008. Isolation of endophytic fungi capable of plant growth promotion from monocots inhibited in the coastal sand dunes of Korea. Kor. J. Life Sci. 18: 1355-1359. https://doi.org/10.5352/JLS.2008.18.10.1355
  10. Khan, S. A., M. Hamayun, H. Y. Kim, H. J. Yoon, I. J. Lee, and J. G. Kim. 2009. Gibberellin production and plant growth promotion by a newly isolated strain of Gliomastix murorum. World J. Microbiol. Biotechnol. 25: 829-833. https://doi.org/10.1007/s11274-009-9981-x
  11. Kil, Y. J., J. K. Eo, and A. H. Eom. 2009. Molecular identification and diveristy of endophytic fungi isolated from Pinus densiflora in Boeun, Korea. Kor. J. Mycol. 37: 130-133. https://doi.org/10.4489/KJM.2009.37.2.130
  12. Mohamed, D. J. and J. B. Martiny. 2011. Patterns of fungal diversity and composition along a salinity gradient. ISME J. 5: 379-388. https://doi.org/10.1038/ismej.2010.137
  13. Park, K. H. and H. K. Lee. 2006. Establishment of the wetland ecosystem information system based on Web-GIS in Gyeongnam region. J. Environ. Res. 6: 99-103.
  14. Pielou, E. C. 1975. Ecological diversity. John Wiley, p 165. New York, USA.
  15. Redman, R. S., K. B. Sheehan, R. G. Stout, R. J. Rodriguez. and J. M. Henson. 2002. Thermotolerance conferred to plant host and fungal endophyte during mutualistic symbiosis. Science 298: 1581. https://doi.org/10.1126/science.1072191
  16. Rodriguez, R. J., R. S. Redman, and J. M. Henson. 2004. The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig. Adap. Strat. Glob. Change 9: 261-272.
  17. Rodriguez, R. J., J. Henson, V. E. Van, M. Hoy, L. Wright, F. Beckwith, Y. Kim, and R. S. Redman. 2008. Stress tolerance in plants via habitat-adapted symbiosis. ISME J. 2: 404-416. https://doi.org/10.1038/ismej.2007.106
  18. Seo, S. T., K. H. Kim, M. J. Kim, J. S. Hong, J. H. Park, and S. C. Shin. 2009. Diversity of fungal endophytes from Pinus koraiensis leaves in Korea. Kor. J. Mycol. 37: 108-110. https://doi.org/10.4489/KJM.2009.37.1.108
  19. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. Molecular evolutionary genetics analysis (MEGA) software version4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  20. Vazquez M. M., S. Cesar, R. Azcon, and J. M. Barea. 2000. Interaction between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl. Soil Ecol. 15: 261-272. https://doi.org/10.1016/S0929-1393(00)00075-5
  21. Waller, F., B. Achatz, T. H. Baltruscha, J. Fodor, K. Becker, M. Fischer, T. Heier, R. Hckelhoven, C. Neumann, D. V. Wettstein, P. Franken, and K. H. Kogel. 2005. The endophytic fungus Piriformospora indica reprograms barley to saltstress tolerance, disease resistance, and higher yield. Proc. Natl. Acid. Sci. USA. 102: 13386-13391. https://doi.org/10.1073/pnas.0504423102
  22. Yamada, A., O. Takeo, D. Yosuke, and O. Masatake. 2001. Isolation of Tricholoma matsutake and T. bakamatsutake cultures from field-collected ectomycorrhizas. Mycoscience 42: 43-50. https://doi.org/10.1007/BF02463974
  23. You, Y. H., H. Yoon, G. S. Lee, J. R. Woo, J. H. Shin, I. J. Lee, S. O. Rim, Y. S. Choo, and J. G. Kim. 2011. Diversity and plant growth-promotion of endophytic fungi isolated from the roots of plants in Dokdo islands. Kor. J. Life Sci. 21: 992-996. https://doi.org/10.5352/JLS.2011.21.7.992
  24. You, Y. H., H. Yoon, J. R. Woo, Y. Seo, M. Kim, G. Lee, and J. G. Kim. 2012. Diversity of Endophytic Fungi from the Roots of Halophytes Growing in Go-chang Salt Marsh. Kor. J. Mycol. 40: 86-92. https://doi.org/10.4489/KJM.2012.40.2.86
  25. You, Y. H., H. Yoon, Y. Seo, M. Kim, M. S. Kang, C. Kim, S. C. Ha, G. Y. Cho, and J. G. Kim. 2012. Genetic Diversity of Culturable Endophytic fungi Isolated from Halophytes Naturally Growing in Muan Salt Marsh. Kor. J. Life Sci. 22: 970-980. https://doi.org/10.5352/JLS.2012.22.7.970
  26. Zhang, X. Y., J. Bao, G. H. Wang, F. He, X. Y. Xu, and S. H. Qi. 2012. Diversity and Antimicrobial activity of culturable fungi isolated from six species of the South China sea gorgonians. Microb. Ecol. In press. DOI 10.1007/s00248- 012-0050-x.

Cited by

  1. 고창·부안 갯벌에 자생하는 염생식물 칠면초 근권 및 근면으로부터 내 염성 세균 분리와 그 특성화 vol.60, pp.2, 2012, https://doi.org/10.3839/jabc.2017.021