DOI QR코드

DOI QR Code

A new synthetic chalcone derivative, 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139), suppresses the Toll-like receptor 4-mediated inflammatory response through inhibition of the Akt/NF-${\kappa}B$ pathway in BV2 microglial cells

  • Lee, Young Han (Department of Biomedical Science and Technology, Research Center for Transcription Control, SMART Institute of Advanced Biomedical Science, Konkuk University) ;
  • Jeon, Seung-Hyun (Department of Biomedical Science and Technology, Research Center for Transcription Control, SMART Institute of Advanced Biomedical Science, Konkuk University) ;
  • Kim, Se Hyun (Institute of Human Behavioral Medicine, Seoul National University College of Medicine) ;
  • Kim, Changyoun (Department of Biomedical Science and Technology, Research Center for Transcription Control, SMART Institute of Advanced Biomedical Science, Konkuk University) ;
  • Lee, Seung-Jae (Department of Biomedical Science and Technology, Research Center for Transcription Control, SMART Institute of Advanced Biomedical Science, Konkuk University) ;
  • Koh, Dongsoo (Department of Applied Chemistry, Dongduk Women's University) ;
  • Lim, Yoongho (Division of Bioscience and Biotechnology, BMIC, Konkuk University) ;
  • Ha, Kyooseob (Mood Disorders Clinic and Affective Neuroscience Laboratory, Department of Neuropsychiatry, Seoul National University Bundang Hospital) ;
  • Shin, Soon Young (Department of Biomedical Science and Technology, Research Center for Transcription Control, SMART Institute of Advanced Biomedical Science, Konkuk University)
  • Accepted : 2012.02.27
  • Published : 2012.06.30

Abstract

Microglial cells are the resident innate immune cells that sense pathogens and tissue injury in the central nervous system (CNS). Microglial activation is critical for neuroinflammatory responses. The synthetic compound 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139) is a novel chalcone-derived compound. In this study, we investigated the effects of DK-139 on Toll-like receptor 4 (TLR4)-mediated inflammatory responses in BV2 microglial cells. DK-139 inhibited lipopolysaccharide (LPS)-induced TLR4 activity, as determined using a cell-based assay. DK-139 blocked LPS-induced phosphorylation of $I{\kappa}B$ and p65/RelA NF-${\kappa}B$, resulting in inhibition of the nuclear translocation and trans-acting activity of NF-${\kappa}B$ in BV2 microglial cells. We also found that DK-139 reduced the expression of NF-${\kappa}B$ target genes, such as those for COX-2, iNOS, and IL-$1{\beta}$, in LPS-stimulated BV2 microglial cells. Interestingly, DK-139 blocked LPS-induced Akt phosphorylation. Inhibition of Akt abrogated LPS-induced phosphorylation of p65/RelA, while overexpression of dominant-active p110CAAX enhanced p65/RelA phosphorylation as well as iNOS and COX2 expression. These results suggest that DK-139 exerts an anti-inflammatory effect on microglial cells by inhibiting the Akt/$I{\kappa}B$ kinase (IKK)/NF-${\kappa}B$ signaling pathway.

Keywords

Acknowledgement

Supported by : Ministry of Health & Welfare

References

  1. Barnes PJ, Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997;336:1066-71 https://doi.org/10.1056/NEJM199704103361506
  2. Blasius AL, Beutler B. Intracellular toll-like receptors. Immunity 2010;32:305-15 https://doi.org/10.1016/j.immuni.2010.03.012
  3. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F. Toll-like receptor-4 mediates lipopolysaccharide- induced signal transduction. J Biol Chem 1999;274:10689-92 https://doi.org/10.1074/jbc.274.16.10689
  4. Czeh M, Gressens P, Kaindl AM. The yin and yang of microglia. Dev Neurosci 2011;33:199-209 https://doi.org/10.1159/000328989
  5. Egawa K, Sharma PM, Nakashima N, Huang Y, Huver E, Boss GR, Olefsky JM. Membrane-targeted phosphatidylinositol 3-kinase mimics insulin actions and induces a state of cellular insulin resistance. J Biol Chem 1999;274:14306-14 https://doi.org/10.1074/jbc.274.20.14306
  6. Giri S, Rattan R, Singh AK, Singh I. The 15-deoxy-delta12, 14-prostaglandin J2 inhibits the inflammatory response in primary rat astrocytes via down-regulating multiple steps in phosphatidylinositol 3-kinase-Akt-NF-kappaB-p300 pathway independent of peroxisome proliferator-activated receptor gamma. J Immunol 2004;173:5196-208 https://doi.org/10.4049/jimmunol.173.8.5196
  7. Graeber MB, Streit WJ. Microglia: biology and pathology. Acta Neuropathol 2010;119:89-105 https://doi.org/10.1007/s00401-009-0622-0
  8. Hanke ML, Kielian T. Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci (Lond) 2011;121:367-87 https://doi.org/10.1042/CS20110164
  9. Jeong HK, Jou I, Joe EH. Systemic LPS administration induces brain inflammation but not dopaminergic neuronal death in the substantia nigra. Exp Mol Med 2010;42:823-32 https://doi.org/10.3858/emm.2010.42.12.085
  10. Jing H, Zhou X, Dong X, Cao J, Zhu H, Lou J, Hu Y, He Q, Yang B. Abrogation of Akt signaling by Isobavachalcone contributes to its anti-proliferative effects towards human cancer cells. Cancer Lett 2010;294:167-77 https://doi.org/10.1016/j.canlet.2010.01.035
  11. Lawlor MA, Alessi DR. PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 2001;114:2903-10
  12. Lee JY, Jhun BS, Oh YT, Lee JH, Choe W, Baik HH, Ha J, Yoon KS, Kim SS, Kang I. Activation of adenosine A3 receptor suppresses lipopolysaccharide-induced TNF-alpha production through inhibition of PI 3-kinase/Akt and NF-kappaB activation in murine BV2 microglial cells. Neurosci Lett 2006;396:1-6 https://doi.org/10.1016/j.neulet.2005.11.004
  13. Li X, Tupper JC, Bannerman DD, Winn RK, Rhodes CJ, Harlan JM. Phosphoinositide 3 kinase mediates Toll-like receptor 4-induced activation of NF-kappa B in endothelial cells. Infect Immun 2003;71:4414-20 https://doi.org/10.1128/IAI.71.8.4414-4420.2003
  14. Madrid LV, Wang CY, Guttridge DC, Schottelius AJ, Baldwin AS Jr, Mayo MW. Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Mol Cell Biol 2000;20:1626-38 https://doi.org/10.1128/MCB.20.5.1626-1638.2000
  15. Madrid LV, Mayo MW, Reuther JY, Baldwin AS Jr. Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. J Biol Chem 2001;276:18934-40 https://doi.org/10.1074/jbc.M101103200
  16. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997;388:394-7 https://doi.org/10.1038/41131
  17. Nam KN, Son MS, Park JH, Lee EH. Shikonins attenuate microglial inflammatory responses by inhibition of ERK, Akt, and NF-kappaB: neuroprotective implications. Neuropharmacology 2008;55:819-25 https://doi.org/10.1016/j.neuropharm.2008.06.065
  18. Nimmo AJ, Vink R. Recent patents in CNS drug discovery: the management of inflammation in the central nervous system. Recent Pat CNS Drug Discov 2009;4:86-95 https://doi.org/10.2174/157488909788452997
  19. O'Neill LA, Bowie AG. The family of five: TIR-domaincontaining adaptors in Toll-like receptor signalling. Nat Rev Immunol 2007;7:353-64 https://doi.org/10.1038/nri2079
  20. Orlikova B, Tasdemir D, Golais F, Dicato M, Diederich M. Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr 2011;6:125-47 https://doi.org/10.1007/s12263-011-0210-5
  21. Ospelt C, Gay S. TLRs and chronic inflammation. Int J Biochem Cell Biol 2010;42:495-505 https://doi.org/10.1016/j.biocel.2009.10.010
  22. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 1999;401:82-5 https://doi.org/10.1038/43466
  23. Park HY, Han MH, Park C, Jin CY, Kim GY, Choi IW, Kim ND, Nam TJ, Kwon TK, Choi YH. Anti-inflammatory effects of fucoidan through inhibition of NF-kappaB, MAPK and Akt activation in lipopolysaccharide-induced BV2 microglia cells. Food Chem Toxicol 2011;49:1745-52 https://doi.org/10.1016/j.fct.2011.04.020
  24. Pietta PG. Flavonoids as antioxidants. J Nat Prod 2000;63: 1035-42 https://doi.org/10.1021/np9904509
  25. Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA 1998;95:588-93 https://doi.org/10.1073/pnas.95.2.588
  26. Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 2011;11:775-87 https://doi.org/10.1038/nri3086
  27. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictormTOR complex. Science 2005;307:1098-101 https://doi.org/10.1126/science.1106148
  28. Shin SY, Hyun J, Lim Y, Lee YH. 3'-Chloro-5, 7-dimethoxyisoflavone inhibits TNFalpha-induced CXCL10 gene transcription by suppressing the NF-kappaB pathway in HCT116 human colon cancer cells. Int Immunopharmacol 2011a;11:2104-11 https://doi.org/10.1016/j.intimp.2011.09.003
  29. Shin SY, Woo Y, Hyun J, Yong Y, Koh D, Lee YH, Lim Y. Relationship between the structures of flavonoids and their NF-kappaB-dependent transcriptional activities. Bioorg Med Chem Lett 2011b;21:6036-41 https://doi.org/10.1016/j.bmcl.2011.08.077
  30. Sizemore N, Leung S, Stark GR. Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-kappaB p65/RelA subunit. Mol Cell Biol 1999;19:4798-805
  31. Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 1995;8:127-34 https://doi.org/10.1093/protein/8.2.127
  32. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990;249:1431-3 https://doi.org/10.1126/science.1698311
  33. Yadav VR, Prasad S, Sung B, Aggarwal BB. The role of chalcones in suppression of NF-kappaB-mediated inflammation and cancer. Int Immunopharmacol 2011;11:295-309 https://doi.org/10.1016/j.intimp.2010.12.006
  34. Yao LH, Jiang YM, Shi J, Tomas-Barberan FA, Datta N, Singanusong R, Chen SS. Flavonoids in food and their health benefits. Plant Foods Hum Nutr 2004;59:113-22 https://doi.org/10.1007/s11130-004-0049-7

Cited by

  1. Anti-inflammatory effects of egg white combined with chalcanthite in lipopolysaccharide-stimulated BV2 microglia through the inhibition of NF-κB, MAPK and PI3K/Akt signaling pathways vol.31, pp.1, 2012, https://doi.org/10.3892/ijmm.2012.1169
  2. Anti-inflammatory effects of saponins derived from the roots of Platycodon grandiflorus in lipopolysaccharide-stimulated BV2 microglial cells vol.31, pp.6, 2013, https://doi.org/10.3892/ijmm.2013.1330
  3. Ethanol extract of Cnidium officinale exhibits anti-inflammatory effects in BV2 microglial cells by suppressing NF-κB nuclear translocation and the activation of the PI3K/Akt signaling pathway vol.32, pp.4, 2012, https://doi.org/10.3892/ijmm.2013.1447
  4. Ethanol extract of Poria cocos reduces the production of inflammatory mediators by suppressing the NF-kappaB signaling pathway in lipopolysaccharide-stimulated RAW 264.7 macrophages vol.14, pp.None, 2012, https://doi.org/10.1186/1472-6882-14-101
  5. Anti-inflammatory effects of 5-hydroxy-3,6,7,8,3′,4′-hexamethoxyflavone via NF-κB inactivation in lipopolysaccharide-stimulated RAW 264.7 macrophage vol.9, pp.4, 2012, https://doi.org/10.3892/mmr.2014.1922
  6. Review:Mimosa pudicaLinn.: the garden weed with therapeutic properties vol.62, pp.4, 2015, https://doi.org/10.1080/07929978.2015.1066997
  7. TLR4-mediated IRAK1 activation induces TNF-α expression via JNK-dependent NF-κB activation in human bronchial epithelial cells vol.13, pp.3, 2015, https://doi.org/10.1177/1721727x15619185
  8. Inhibitory Effect of 3-(4-Hydroxyphenyl)-1-(thiophen-2-yl) prop-2-en-1-one, a Chalcone Derivative on MCP-1 Expression in Macrophages via Inhibition of ROS and Akt Signaling vol.23, pp.2, 2012, https://doi.org/10.4062/biomolther.2014.127
  9. Bioactive phenols as potential neuroinflammation inhibitors from the leaves of Xanthoceras sorbifolia Bunge vol.26, pp.20, 2012, https://doi.org/10.1016/j.bmcl.2016.08.094
  10. Chalcone: A Privileged Structure in Medicinal Chemistry vol.117, pp.12, 2012, https://doi.org/10.1021/acs.chemrev.7b00020
  11. A novel chalcone derivative S17 induces apoptosis through ROS dependent DR5 up-regulation in gastric cancer cells vol.7, pp.None, 2012, https://doi.org/10.1038/s41598-017-10400-3
  12. Tamarix hohenackeri Bunge exerts anti-inflammatory effects on lipopolysaccharide-activated microglia in vitro vol.40, pp.None, 2012, https://doi.org/10.1016/j.phymed.2017.12.035
  13. Clozapine reduces Toll-like receptor 4/NF-κB-mediated inflammatory responses through inhibition of calcium/calmodulin-dependent Akt activation in microglia vol.81, pp.None, 2012, https://doi.org/10.1016/j.pnpbp.2017.04.012
  14. Ibrutinib suppresses LPS-induced neuroinflammatory responses in BV2 microglial cells and wild-type mice vol.15, pp.None, 2012, https://doi.org/10.1186/s12974-018-1308-0
  15. Synthesis, Biological Evaluation and Docking Studies of Chalcone and Flavone Analogs as Antioxidants and Acetylcholinesterase Inhibitors vol.9, pp.3, 2012, https://doi.org/10.3390/app9030410
  16. Increased Anti-Inflammatory Effects on LPS-Induced Microglia Cells by Spirulina maxima Extract from Ultrasonic Process vol.9, pp.10, 2012, https://doi.org/10.3390/app9102144
  17. Anti-Inflammatory Activity of Sanjie Zhentong Capsule Assessed By Network Pharmacology Analysis of Adenomyosis Treatment  vol.14, pp.None, 2012, https://doi.org/10.2147/dddt.s228721
  18. Discovery and Development of Inflammatory Inhibitors from 2-Phenylchromonone (Flavone) Scaffolds vol.20, pp.None, 2012, https://doi.org/10.2174/1568026620666200924115611
  19. Chalcone Derivatives: Role in Anticancer Therapy vol.11, pp.6, 2012, https://doi.org/10.3390/biom11060894
  20. Chalcones: Synthetic Chemistry Follows Where Nature Leads vol.11, pp.8, 2012, https://doi.org/10.3390/biom11081203