DOI QR코드

DOI QR Code

Climatic and Environmental Effects on Distribution of Narrow Range Plants

국지적으로 분포하는 식물에 대한 기후 및 환경변수 영향

  • Kwon, Hyuksoo (National Institute of Environmental Research) ;
  • Ryu, Jieun (Graduate School, Seoul National University) ;
  • Seo, Changwan (Environmental Planning Institute, Seoul National University) ;
  • Kim, Jiyeon (National Institute of Environmental Research) ;
  • Tho, Jaehwa (National Institute of Environmental Research) ;
  • Suh, Minhwan (National Institute of Environmental Research) ;
  • Park, Chonghwa (Dept. of Landscape Architecture, Seoul National University)
  • 권혁수 (국립환경과학원 자연자원연구과) ;
  • 류지은 (서울대학교대학원) ;
  • 서창완 (서울대학교 환경계획연구소) ;
  • 김지연 (국립환경과학원 자연자원연구과) ;
  • 도재화 (국립환경과학원 자연자원연구과) ;
  • 서민환 (국립환경과학원 자연자원연구과) ;
  • 박종화 (서울대학교 환경조경학과)
  • Received : 2012.06.07
  • Accepted : 2012.12.11
  • Published : 2012.12.31

Abstract

Climate is generally accepted as one of the major determinants of plants distribution. Plants are sensitive to bioclimates, and local variations of climate determine habitats of plants. The purpose of this paper is to identify the factors affecting the distribution of narrow-range plants in South Korea using National Survey of Natural Environment data. We developed species distribution models for 6 plant species using climate, topographic and soil factors. All 6 plants were most sensitive to climatic factors but less other factors at national scale. Meliosma myriantha, Stewartia koreana and Eurya japonica, distributed at southern and coast region in Korea, were most sensitive to precipitation and temperature. Meliosma myriantha was mostly effected by annual precipitation and precipitation of driest quarter, Stewartia koreana was effected by annual precipitation and elevation, and Eurya japonica was affected by temperature seasonality and precipitation of driest quarter. On the other hand, Spiraea salicifolia, Rhododendron micranthum and Acer tegmentosum, distributed at central and northern inland in Korea, were most sensitive to temperature and elevation. Spiraea salicifolia was affected by mean temperature of coldest quarter and annual mean temperature, Rhododendron micranthum and Acer tegmentosum were affected by mean temperature of warmest quarter and elevation. We can apply this result to future plant habitat distribution under climate change.

Keywords

References

  1. Attorre, F., M. Alfo, M. De Sanctis, F. Francesconi, R. Valenti, M. Vitale and F. Bruno, 2011. Evaluating the effects of climate change on tree species abundance and distribution in the Italian peninsula. Applied Vegetation Science 14(2):242-255. https://doi.org/10.1111/j.1654-109X.2010.01114.x
  2. Austin, M. 2002. Spatial prediction of species distribution : an interface between ecological theory and statistical modelling. Ecological Modelling 157:101-118. https://doi.org/10.1016/S0304-3800(02)00205-3
  3. Choi, U. H. 2007. Study on Habitat and Propagation of Acer tegmentosum Max. Master's Thesis, Kangwon National University.
  4. Chung, M. G. and B. K. Epperson. 2000. Spatial genetic structure of Allozyme polymorphisms in a population of Eurya japonica (Theaceae). Silvae Genetica 49(1):1-4.
  5. Chung, M. G. and S. S. Kang. 1994. Genetic variation and population structure in Korean populations of Eurya japonica (Theaceae). American Journal of Botany 81(8), 1077-1082. https://doi.org/10.2307/2445303
  6. Elith, J., H. Graham, C. P. Anderson, R. Dudík, M. Ferrier, S. Guisan, A. J. Hijmans. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29(2):129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
  7. Fortin, M. J. and M. R. T. Dale. 2005. Spatial analysis : a guide for ecologists. New York: Cambridge University Press.
  8. Franklin, J. 2009. Mapping Species Distributions Spatial Inference and Prediction. New York: Cambridge University Press.
  9. Fukuda, Y. 1933. Hygronastic curling and uncurling movement of the leaves of Rhododendron micranthum Turcz. with respect to temperature and resistance to cold. Japanese Journal of Botany 6(2), 191-224.
  10. Guisan, A. and W. Thuiller. 2005. Predicting species distribution : offering more than simple habitat models. Ecology Letters 8(9), 993-1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x
  11. Hannah, L. 2011. Climate Change Biology. America (p. 416). Academic Press.
  12. Harrison, P., P. Berry, N. Butt and M. New. 2006. Modelling climate change impacts on species' distributions at the European scale : implications for conservation policy. Environmental Science Policy 9(2), 116-128. https://doi.org/10.1016/j.envsci.2005.11.003
  13. Horikawa, M., I. Tsuyama, T. Matsui, Y. Kominami and N. Tanaka. 2009. Assessing the potential impacts of climate change on the alpine habitat suitability of Japanese stone pine (Pinus pumila). Landscape Ecology 24(1):115-128. https://doi.org/10.1007/s10980-008-9289-5
  14. Jin, G. Z., R. Li, Z. H. Li and J. H. Kim. 2007. Spatial Pattern of Acer tegmentosum in the Mixed Broadleaved-Korean Pine Forest of Xiaoxing'an Mountains, China. Journal of Korean Forest Society 96(6):730-736.
  15. Kim, J. W., M. B. Lee, W. S. Kong, T. H. Kim, C. S. Kang, K. Park and B. I. Park. 2008. Physical Geography of Korea. Seoul : Seoul National University Press. (in Korean)
  16. Kim, N. Y. 2010. Study on Growth Characteristics and Propagation for Preservation of Rare Rhododendron micranthum. Ph.D dissertation, Kangwon National University. (in Korean with English summary)
  17. Kong, W. S. 2002. Species Composition and Distribution of Korean Alpine Plants. Journal of the Korean Geographical Society 37(4):357-370. (in Korean with English summary)
  18. Kong, W. S. 2007. Biogeography of Korean Plants. Seoul:Geobook. (in Korean)
  19. Koo, K. A., W. S. Kong and C. K. Kim. 2001. Distribution of Evergreen Broad-Leaved Plants and Climatic Factors. Journal of the Korean Geographical Society 36(3):247-257. (in Korean with English summary)
  20. Korea Forest Service and Korea National Arboretum. 2010. 300 Target Plants Adaptable to Climate Change in the Korean Peninsula. Pochon:Korea National Arboretum. (in Korean)
  21. Kwon, H. J., H. K. Song. 2008. Vegetaion structures and Ecological Properties of Sterwartia koreana Community. Journal of Korean Forest Society 97(3):296-304. (in Korean with English summary)
  22. Kwon, H. J., J. H. Gwon, H. R. Jeon, J. H. Lee and H. K. Song. 2011. Vegetation Structures of Stewartia koreana Forest in Mt. Jirisan. Korean J. Environ. Ecol. 25(5):725-735. (in Korean with English summary)
  23. Lee, C. B. 1999. Illustrated Flora of Korea. Seoul: Hyangmunsa. (in Korean)
  24. Lee, D. K., J. W. Kim and C. Park. 2010. A Prediction of Forest Vegetation based on Land Cover Change in 2090. Journal of Environmental Impact Assessment 19(2):117-125. (in Korean with English summary)
  25. Lee, J. H. and B. H. Choi. 2010. Distribution and Northernmost Limit on the Korean Peninsula of Three Evergreen Trees. Korean Journal of Plant Taxonomy 40(4):267-273. (in Korean with English summary)
  26. Lee, J. S., W. K. Lee, J. H. Yoon and C. C. Song. 2006. Distribution Pattern of Pinus densiflora and Quercus Spp. Stand in Korea Using Spatial Statistics and GIS. Journal of Korean Forest Society 95(6):663-671. (in Korean with English summary)
  27. Lee, K. J., S. S. Han, J. H. Kim and E. S. Kim. 2007. Forest Ecology. Seoul:Hyangmunsa. (in Korean)
  28. Lee, K. U., K. C. Yu and B. R. Lee. 1989. A Study on the wild Rhododendron micranthum for being used as Landscape Plant. Journal of The Korean Institute of Landscape Architecture 17(2):41-46. (in Korean with English summary)
  29. Lovejoy, T. E. and L. Hannah. 2005. Climate change and biodiversity. Yale University Press.
  30. Manabe, T. and S. I. Yamamoto. 1997. Spatial distribution of Eurya japonica in an oldgrowth evergreen broad-leaved forest, SW Japan. Journal of Vegetation Science 8(6):761-772. https://doi.org/10.2307/3237020
  31. Nakao, K., T. Matsui, M. Horikawa, K. Tsuyama and N. Tanaka. 2011. Assessing the impact of land use and climate change on the evergreen broad-leaved species of Quercus acuta in Japan. Plant Ecology 212(2):229-243. https://doi.org/10.1007/s11258-010-9817-7
  32. Nilsen, E. T. 1987. Influence of water relations and temperature on leaf movements of rhododendron species. Plant physiology 83(3):607-612. https://doi.org/10.1104/pp.83.3.607
  33. Ottaviani, D., G. J. Lasinio and L. Boitani. 2004. Two statistical methods to validate habitat suitability models using presence-only data. Ecological Modelling 179(4):417-443. https://doi.org/10.1016/j.ecolmodel.2004.05.016
  34. Phillips, S., R. Anderson and R. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190(3-4):231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  35. Seo, C., J. H. Thorne, L. Hannah and W. Thuiller. 2009. Scale effects in species distribution models : implications for conservation planning under climate change. Biology letters 5(1):39-43. https://doi.org/10.1098/rsbl.2008.0476
  36. Shim, K. K., B. K. Seo, K. W. Lee, H. N. Cho and S. C. Shim. 1992. Study on the Korean Native Stewartia (Stewartia koreana). Korean J. Hortic. Sci. 33(5), 413-424.
  37. Thuiller, W. 2003. BIOMOD - optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology 9(10):1353-1362. https://doi.org/10.1046/j.1365-2486.2003.00666.x
  38. Trisurat, Y., R. P. Shrestha and R. Kjelgren. 2011. Plant species vulnerability to climate change in Peninsular Thailand. Applied Geography 31(3):1106-1114. https://doi.org/10.1016/j.apgeog.2011.02.007
  39. Woodward, F. I. and B. G. Williams. 1987. Climate and plant distribution at global and local scales. Vegetatio 69(1-3):189-197. https://doi.org/10.1007/BF00038700
  40. Yang, K. C. and J. K. Shim. 2007. Distribution of Major Plant Communities Based on the Climatic Conditions and Topographic Features in South Korea. Korean J. Environ. Biol. 25(2):168-177. (in Korean with English summary)
  41. Yun, J. H., J. H. Kim, K. H. Oh, B. Y. Lee. 2011. Distributional Change and Climate Condition of Warm-temperate Evergreen Broad-Leaved Trees in Korea. Korean J. Environ. Ecol. 25(1):47-56. (in Korean with English summary)
  42. Yun, J. H., K. Nakao, C. H. Park, B. Y. Lee, K. H. Oh. 2011. Change Prediction for Potential Habitats of Warm-temperate Evergreen Broad-Leaved Trees in Korea by Climate Change. Korean J. Environ. Ecol. 25(4):590-600. (in Korean with English summary)
  43. Yun, J. H., K. Nakao, C. H. Park, B. Y. Lee. 2011. Potential Habitats and Change Prediction of Machilus thunbergii Siebold and Zucc. in Korea by Climate Change. Korean J. Environ. Ecol. 25(6):903-910. (in Korean with English summary)
  44. Http://eol.org Encyclopedia of Life

Cited by

  1. Predicting the suitable habitat of the Pinus pumila under climate change vol.23, pp.5, 2014, https://doi.org/10.14249/eia.2014.23.5.379
  2. Applying Ensemble Model for Identifying Uncertainty in the Species Distribution Models vol.22, pp.4, 2014, https://doi.org/10.7319/kogsis.2014.22.4.047
  3. Accuracy Evaluation of Potential Habitat Distribution in Pinus thunbergii using a Species Distribution Model: Verification of the Ensemble Methodology vol.11, pp.1, 2012, https://doi.org/10.15531/ksccr.2020.11.1.37