DOI QR코드

DOI QR Code

Physicochemical Properties of Dextran Produced by Leuconostoc mesenteroides SM according to Concentration of Yeast Extract and its Modulation of Rheological Properties

효모 추출물 농도에 따른 Leuconostoc mesenteroides SM에 의해 생산된 dextran의 물리화학적 특성 및 물성개량

  • Kim, Ji-Eun (Department of Food Science and Technology, Keimyung University) ;
  • Whang, Key (Department of Food Science and Technology, Keimyung University) ;
  • Lee, Sam-Pin (Department of Food Science and Technology, Keimyung University)
  • 김지은 (계명대학교 식품가공학과) ;
  • 황기 (계명대학교 식품가공학과) ;
  • 이삼빈 (계명대학교 식품가공학과)
  • Received : 2011.11.07
  • Accepted : 2012.02.29
  • Published : 2012.04.30

Abstract

Dextran was produced by $Leuconostoc$ $mesenteroides$ SM with various contents of yeast extract and its rheological properties were modulated, via an addition of hydroxypropyl methylcellulose (HPMC) of different viscosities. The conversion yield reached 90% after adding 3% yeast extract, which remained constant, thereafter. The acidity of the cultures was approximately 1.4 and 0.9% after fermentation for 24 h at 25 and $30^{\circ}C$, respectively. The total dextran content (107.3 g/kg) was the highest in the presence of the 3% yeast extract. Under the same conditions, the consistency, viscous modulus (G"), and elastic modulus (G') of the cultures were $37.6\;Pa{\cdot}s^n$, 38 Pa, and 50 Pa, respectively. The rheological properties of the culture were changed drastically by the fortification with HPMC of higher concentration and viscosity. The addition of 10% HPMC (4,000 cp) resulted in a significant increase in G" to 1,950 Pa. Furthermore, adding HPMC to a viscous culture resulted in a remarkable increase in both hardness and firmness.

당근주스에서 분리된 $Ln.$ $mesenteroides$ SM 균주와 효모 추출물 첨가 농도에 따라 생산된 덱스트란 함유 발효물의 물리, 화학적 성질을 평가하였으며, 식이섬유 HPMC 첨가에 따른 발효물의 물성을 조절하였다. Sucrose를 포함한 제한배지에 효모 추출물을 0.5% 이상 첨가 시 sucrose 전환율이 급격히 증가되었으며 3% 농도증가에 따라 전환율이 90%까지 증가하였으며 점조도 값은 $37.6\;Pa{\cdot}s^n$으로 가장 높은 값을 나타내었다. 발효물의 산생성은 발효온도 25, $30^{\circ}C$에서 24시간 이후 최고 산도 값 1.4% 이상을 나타냈으며, 낮은 발효온도에서는 1.0% 수준으로 낮은 값을 보였다. 기본 제한배지에 효모 추출물을 3% 수준으로 첨가하여 $30^{\circ}C$에서 24시간 동안 발효했을 때, 발효물의 점성과 탄성 값이 각각 약 40과 50 Pa로 가장 높게 나타났으며, 불용성 덱스트란과 전체 덱스트란의 생산량이 가장 높았다. 식이섬유 HPMC의 점도가 400, 4,000 cp인 경우에 덱스트란 함유 발효물은 높은 점탄성 값을 보였으며, 첨가 농도가 증가할수록 점탄성 값이 크게 증가되었다. 또한 HPMC가 강화된 덱스트란 함유 발효물의 견고성을 포함한 firmness는 HPMC 첨가 농도 증가 및 점도가 높을수록 급격하게 증가하면서 점탄성이 높은 겔을 형성하였다. 결론적으로 식물성 젖산균 $Ln.$ $mesenteroides$ SM 균주를 이용하여 효모 추출물을 고농도로 첨가하여 24시간 발효를 통해서 점조성이 높고, 산도가 적절한 겔 형태의 발효물을 생산할 수 있으며, 식이섬유인 HPMC의 혼합에 따라 덱스트란 함유 발효물의 견고성, firmness등의 조절이 가능하며 점탄성이 급격하게 증가된 겔을 형성할 수 있었다. 따라서 덱스트란 함유 젖산균 발효물은 수용성 식이섬유 HPMC의 강화에 따라 probiotic 및 prebiotic을 포함하면서 점조도 및 점탄성이 증진되어 식품의 물성개량제 등으로 활용할 수 있을 것으로 기대된다.

Keywords

References

  1. Hwang SK, Hong JT, Jung KH, Chang BC, Hwang KS, Shin JH, Yim SP, Yoo SK. Process optimization of dextran production by Leuconostoc sp. strain YSK. Isolated from fermented kimchi. J. Life Sci. 18: 1377-1383 (2008) https://doi.org/10.5352/JLS.2008.18.10.1377
  2. Morris ER, Curture AN, Ross-Murphy SB, Rees DA. Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohyd. Polmer 1: 5-21 (1981) https://doi.org/10.1016/0144-8617(81)90011-4
  3. Miller AW, Robyt JF. Functional molecular size and structure of dextransucrase by radiation inactivation and gel electrophoresis. Biochim. Biophys. Acta 870: 198-203 (1986) https://doi.org/10.1016/0167-4838(86)90222-0
  4. Santos M, Teixeira J, Rodrigues A. Production of dextransucrase, dextran and fructose from sucrose using Leuconostoc mesenteroides NRRL B412(f). Biochem. Eng. 4: 177-188 (2000) https://doi.org/10.1016/S1369-703X(99)00047-9
  5. Kim D, Thomas S, Fogler H. Effects of pH and trace minerals on long-term starvation of Leuconostoc mesenteroides. Appl. Environ. Microb. 66: 976-981 (2000) https://doi.org/10.1128/AEM.66.3.976-981.2000
  6. Son MJ, Jang EK, Kwon OS, Seo JH, Kim IJ, Lee IS, Park SC, Lee SP. Characterization of dextran produced from Leuconostoc citreum S5 strain isolated from Korean fermented vegetable. Eur. Food Res. Technol. 226: 697-706 (2008) https://doi.org/10.1007/s00217-007-0579-y
  7. Barry NP, Waynem DC. Diffusion of dextran at intermediate concentrations. J. Chem. Soc. Farad. T. 1 78: 1209-1221 (1982) https://doi.org/10.1039/f19827801209
  8. Comper WD, Preston BN. The approach of mutual diffusion coefficient to molecular weight independence in semidilute solutions of polydisperse dextran fractions. J. Phys. Chem. 90: 128- 132 (1986) https://doi.org/10.1021/j100273a029
  9. Tecante A, Lopez-Munguia C. Rheological characterization of dextran- enzymatic synthesis media. J. Appl. Polymer Sci. 31: 2337-2350 (1986) https://doi.org/10.1002/app.1986.070310731
  10. In MJ, Chae HJ. Production of yeast extract by a combined method of autolysis and enzymatic hydrolysis. Korean J. Biotechnol. Bioeng. 19: 245-249 (2004)
  11. Hirosh S. Synergistic effect of ethanol and sodium chloride on autolysis baker's yeast for preparing food-grade yeast extract. J. Food Sci. 39: 939-942 (1974) https://doi.org/10.1111/j.1365-2621.1974.tb07281.x
  12. Izzo HV, Ho CT. Ammonia affects maillard chemistry of an extruded autolyzed yeast extract: Pyrazine roma generation and brown color formation. J. Food. Sci. 57: 657-659 (1992) https://doi.org/10.1111/j.1365-2621.1992.tb08064.x
  13. Choi SJ, Chung BH. Simultaneous production of invertase and yeast extract from baker's yeast. Korean J. Biotechnol. Bioeng. 13: 308-311 (1998)
  14. Choi HT, Rhee SK, Son JY. Studies on the processing of yeast extract by waste brewery yeast. J. Korean Soc. Food Nutr. 14: 161-166 (2001)
  15. David H, Louis H, Bartley G. Tryptophan increase extracellular serotonin in the lateral hypothalamus of food-deprived rats. Brain Res. Bull. 25: 803-807 (1990) https://doi.org/10.1016/0361-9230(90)90174-X
  16. Lee HS, Jung EY, Suh HJ. Chemical composition and anti-stress effects of yeast hydrolysate. J. Med. Food 12: 1281-1285 (2009) https://doi.org/10.1089/jmf.2009.0098
  17. Bae C. Antagonistic effect of Lactobacillus plantarum SK1305 and optimum media composition determined by Plackett-Burman Design. MS thesis, Konkuk University, Seoul, Korea (2008)
  18. Sarkar S. Potential of prebiotics as functional foods- A review. Nutr. Food Sci. 37: 168-177 (2007) https://doi.org/10.1108/00346650710749062
  19. Chen HH. Rheological properties of HPMC enhanced surimi analyzed by small and large strain tests: The effect of concentration and temperature on HPMC flow properties. Food Hydrocolloid. 21: 1201-1208 (2007) https://doi.org/10.1016/j.foodhyd.2006.09.007
  20. Kim MY, Yun MS, Lee JH, Lee SK. Effects of HPMC, MC, and sodium alginate on rheological properties of flour dough Food Sci. Biotechnol. 40: 474-478 (2008)
  21. Jo SJ, Oh SM, Jang EK, Hwang K, Lee SP. Physicochemical properties of carrot juice fermented by Leuconostoc mesenteroides SM. J. Korean Soc. Food Sci. Nutr. 37: 210-216 (2008) https://doi.org/10.3746/jkfn.2008.37.2.210
  22. Turabi E, Sumnu G, Sahin S. Rheological properties and quality of rice cakes formulated with different gums and an emulsifier blend. Food Hydrocolloid. 22: 305-312 (2008) https://doi.org/10.1016/j.foodhyd.2006.11.016
  23. Kang TH, Jung SJ, Kang SA, Jang KH, Jang EK, Kim SH, Kim IH, Kim SH, Rhee SK, Chun UH. Preparation of levan oligosaccharides by acid hydrolysis and its application in growth of lactic acid-producing bacteria. Korean J. Biotechnol. Bioeng. 17: 137- 141 (2002)
  24. Hwang SK. Isolation of bacteria producing dextran from fermented kimchi and optimization of dextran production. MS Thesis, Joongbu University, Geumsan, Korea (2007)
  25. Son MJ, Lee SP. Effects of various polysaccharides on the physicochemical properties of the dextran culture containing carrot juice residue obtained from submerged culture using Leuconostoc citreum S5. J. Korean Soc. Food Sci. Nutr. 38: 352-358 (2009) https://doi.org/10.3746/jkfn.2009.38.3.352
  26. Lopretti M, Martinez E, Torres L, Perdomo R, Santos M, Rodriques AE. Influence of nitrogen/carbon ration and complementary sugars on dextransucrase production by Leuconostoc mesenteroides NRRLB512(f). Process Biochem. 34: 879-884 (1999) https://doi.org/10.1016/S0032-9592(99)00020-5
  27. Lee JS, Han PJ, Suh KB. Studies on production of modified yoghurt (soy cream) from soybean milk (I). Korean J. Food Sci. Technol. 4: 194-199 (1972)
  28. Hardy IJ, Cook WG, Melia CD. Compression and compaction properties of plasticised high molecular weight hydroxy propyl methyl cellulose (HPMC) as a hydrophilic matrix carrier. Int. J. Pharm. 311: 26-32 (2006) https://doi.org/10.1016/j.ijpharm.2005.12.025
  29. Sarker N, Walker L. Hydration-dehydration properties of methylcellulose and hydroxypropyl methylcellulose. Carbohyd. Polymer 27: 177-185 (1995) https://doi.org/10.1016/0144-8617(95)00061-B
  30. Chen HH, Huang YC. Rheological properties of HPMC enhanced surimi analyzed by small and large strain tests: Effect of water content and ingredients. Food Hydrocolloid. 22: 313-322 (2008) https://doi.org/10.1016/j.foodhyd.2006.12.006

Cited by

  1. Evaluation in physicochemical properties of soy sauce fortified with soymilk residue (okara koji) vol.20, pp.6, 2013, https://doi.org/10.11002/kjfp.2013.20.6.818
  2. Production and fermentation characteristics of seafood kimchi started with Leuconostoc mesenteriodes SK-1 isolated from octopus baechu kimchi vol.23, pp.7, 2016, https://doi.org/10.11002/kjfp.2016.23.7.1050