DOI QR코드

DOI QR Code

Preparation of poly(vinyl alcohol)/poly(acrylic acid)/$TiO_2$/carbon nanotube composite nanofibers and their photobleaching properties

  • Jeon, Sonyeo (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Yun, Jumi (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Kim, Hyung-Il (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
  • Published : 2012.01.25

Abstract

The composite nanofibers of poly(vinyl alcohol) (PVA)/poly(acrylic acid) (PAAc)/titanium(IV) oxide ($TiO_2$) were prepared by electrospinning for a novel photocatalytic treatment of waste water. To improve the photoelectronic properties of PVA/PAAc/$TiO_2$ composite nanofibers, carbon nanotubes (CNTs) were used as an additive. The $TiO_2$ and CNTs were immobilized in the PVA/PAAc hydrogels as electrospun nanofibers for an easier recovery after the wastewater treatment. The improved efficiency of pollutant dye removal was observed at pH 10 due to the pH-sensitive swelling behavior of the PVA/PAAc/$TiO_2$/ CNTs composite nanofibers. The photocatalytic activity of $TiO_2$ was improved noticeably by applying electric field to the CNTs-embedded composite nanofibers.

Keywords

References

  1. C.H. Wu, C.H. Yu, J. Hazard. Mater. 169 (2009) 1179. https://doi.org/10.1016/j.jhazmat.2009.04.064
  2. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95 (1995) 69. https://doi.org/10.1021/cr00033a004
  3. C. Hu, J.C. Yu, Z. Hao, P.K. Wong, Appl. Catal. B: Environ. 42 (2003) 47. https://doi.org/10.1016/S0926-3373(02)00214-X
  4. G.T. Lim, K.H. Kim, J. Park, S.H. Ohk, J.H. Kim, D.L. Cho, J. Ind. Eng. Chem. 16 (2010) 723. https://doi.org/10.1016/j.jiec.2010.07.012
  5. S. Fukahori, H. Ichiura, T. Kitaoka, H. Tanaka, Environ. Sci. Technol. 37 (2003) 1048. https://doi.org/10.1021/es0260115
  6. S. Horikoshi, A. Saitou, H. Hidaka, Environ. Sci. Technol. 37 (2003) 5813. https://doi.org/10.1021/es030326i
  7. C.Y. Kuo, J. Hazard. Mater. 163 (2009) 239. https://doi.org/10.1016/j.jhazmat.2008.06.083
  8. S. Iijima, Nature 354 (1991) 56. https://doi.org/10.1038/354056a0
  9. T.W. Ebbesen, H.J. Lezee, H. Hiura, J.W. Neentt, H.F. Ghaemi, T. Thio, Nature 382 (1996) 54. https://doi.org/10.1038/382054a0
  10. X. Peng, Y. Li, Z. Luan, Z. Di, H. Wang, B. Tian, Z. Jia, Chem. Phys. Lett. 376 (2003) 154. https://doi.org/10.1016/S0009-2614(03)00960-6
  11. Y.H. Li, Y. Zhu, Y. Zhao, D. Wu, Z. Luan, Diamond Relat. Mater. 15 (2006) 90. https://doi.org/10.1016/j.diamond.2005.07.004
  12. C.H. Wu, J. Colloid Interface Sci. 311 (2007) 338. https://doi.org/10.1016/j.jcis.2007.02.077
  13. Y. Yu, J.C. Yu, C.Y. Chan, Y.K. Che, J.C. Zhao, L. Ding, W.K. Ge, P.K. Wong, Appl. Catal. B 61 (2005) 1. https://doi.org/10.1016/j.apcatb.2005.03.008
  14. Y. Yu, J.C. Yu, C.Y. Chan, Y.K. Che, J.C. Zhao, L. Ding, W.K. Ge, P.K. Wong, Appl. Catal. A 289 (2005) 186. https://doi.org/10.1016/j.apcata.2005.04.057
  15. W.C. Oh, F.Z. Zhang, M.L. Chen, J. Ind. Eng. Chem. 16 (2010) 321. https://doi.org/10.1016/j.jiec.2010.01.032
  16. D. Dumitriu, A.R. Bally, C. Ballif, P. Hones, P.E. Schmid, R. Sanjines, F. Levy, V.I. Parvulescu, Appl. Catal. B: Environ. 25 (2000) 83. https://doi.org/10.1016/S0926-3373(99)00123-X
  17. T. Yuranova, R. Mosteco, J. Bandara, D. Laub, J. Kiwi, J. Mol. Catal. A: Chem. 244 (2006) 160. https://doi.org/10.1016/j.molcata.2005.08.059
  18. X. Zhang, M. Zhou, L. Lei, Carbon 44 (2006) 325. https://doi.org/10.1016/j.carbon.2005.07.033
  19. X.Y. Chuan, M. Hirano, M. Inagaki, Appl. Catal. B: Environ. 51 (2004) 255. https://doi.org/10.1016/j.apcatb.2004.03.004
  20. B. Sanchez, J.M. Coronado, R. Candal, R. Portela, I. Tejedor, M.A. Anderson, D. Tompkins, T. Lee, Appl. Catal. B: Environ. 66 (2006) 295. https://doi.org/10.1016/j.apcatb.2006.03.021
  21. Y.H. Li, F.Q. Liu, B. Xia, Q.J. Du, P. Zhang, D.H. Wang, Z.H. Wang, Y. Xia, J. Hazard. Mater. 177 (2010) 876. https://doi.org/10.1016/j.jhazmat.2009.12.114
  22. S.W. Kim, N. Ogata, S.W. Kim, J. Feijen, T. Okano, Biomedical Engineering and Drug Delivery Systems, Springer, Tokyo, 1996.
  23. S. Cai, Y. Liu, X.Z. Shu, G.D. Prestwich, Biomaterials 26 (2005) 6054. https://doi.org/10.1016/j.biomaterials.2005.03.012
  24. D.I.Ha, S.B. Lee, M.S. Chong, Y.M. Lee, S.Y. Kim, Y.H. Park, Macromol. Res. 14 (2006) 87. https://doi.org/10.1007/BF03219073
  25. A.T. Paulino, M.R. Guilherme, A.V. Reis, G.M. Campese, E.C. Muniz, J. Nozaki, J. Colloid Interface Sci. 301 (2006) 55. https://doi.org/10.1016/j.jcis.2006.04.036
  26. H. Byun, B. Hong, S.Y. Nam, S.Y. Jung, J.W. Rhim, S.B. Lee, G.Y. Moon, Macromol. Res. 16 (2008) 189. https://doi.org/10.1007/BF03218851
  27. J. Yun, J.S. Im, Y.S. Lee, H.I. Kim, Eur. Polym. J. 46 (2010) 900. https://doi.org/10.1016/j.eurpolymj.2010.02.005
  28. J. Yun, J.S. Im, Y.S. Lee, T.S. Bae, Y.M. Lim, H.I. Kim, Colloids Surf. A: Physicochem. Eng. Asp. 368 (2010) 23. https://doi.org/10.1016/j.colsurfa.2010.07.010
  29. X. Li, J. Liu, J. Zhang, H. Li, Z. Liu, J. Phys. Chem. B 107 (2003) 2453. https://doi.org/10.1021/jp026887y

Cited by

  1. Temperature and pH-Responsive Release Behavior of PVA/PAAc/PNIPAAm/MWCNTs Nanocomposite Hydrogels vol.13, pp.3, 2012, https://doi.org/10.5714/cl.2012.13.3.173
  2. Surface Engineering of Zinc Oxide Nanoparticles by Biocompatible PPEGMA Polymer: Synthesis, Characterization, and Optical Property Studies vol.580, pp.1, 2012, https://doi.org/10.1080/15421406.2013.803912
  3. Poly(2-hydroxyethyl methacrylate) grafted halloysite nanotubes as a molecular host matrix for luminescent ions prepared by surface-initiated RAFT polymerization and coordination chemistry vol.276, pp.None, 2012, https://doi.org/10.1016/j.apsusc.2013.03.086
  4. Controlled surface mineralization of metal oxides on nanofibers vol.5, pp.47, 2012, https://doi.org/10.1039/c5ra02140e
  5. Tio2‐ or tio2/fe3o4‐containing PVA‐based microgels for controlled photocatalytic degradation of methyl orange vol.38, pp.1, 2012, https://doi.org/10.1002/pc.23568
  6. Tio2‐ or tio2/fe3o4‐containing PVA‐based microgels for controlled photocatalytic degradation of methyl orange vol.38, pp.1, 2012, https://doi.org/10.1002/pc.23568
  7. Preparation of PVA/TiO2 Composites Nanofibers by using Electrospinning Method for Photocatalytic Degradation vol.202, pp.None, 2012, https://doi.org/10.1088/1757-899x/202/1/012011
  8. Swelling of PVA/Chitosan/TiO2 Nanofibers Membrane in Different PH vol.990, pp.None, 2012, https://doi.org/10.4028/www.scientific.net/msf.990.220
  9. Titanium dioxide and graphitic carbon nitride-based nanocomposites and nanofibres for the degradation of organic pollutants in water: a review vol.28, pp.9, 2012, https://doi.org/10.1007/s11356-020-11987-3