DOI QR코드

DOI QR Code

Characterization and photodegradation characteristics of organic dye for Pt-titania combined multi-walled carbon nanotube composite catalysts

  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Zhang, Feng-Jun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Chen, Ming-Liang (Department of Advanced Materials & Science Engineering, Hanseo University)
  • Received : 2009.09.19
  • Accepted : 2009.11.04
  • Published : 2010.03.25

Abstract

Multi-walled carbon nanotubes (MWCNTs), titanium(IV) isopropoxide (TIP) and potassium hexachloroplatinate(IV) ($K_2PtCl_6$) were used for the preparation of Pt/MWCNT/$TiO_2$ composites. The composites were comprehensively characterized by Brauer.Emett.Teller surface area, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy dispersive X-ray and UV-vis absorption spectroscopy. The photoactivity of the prepared materials under UV irradiation was tested using the conversion of methylene blue (MB) in aqueous solution. According to the results of MB removal experiment, it can be considered that the MB removal effect of the Pt/MWCNT/$TiO_2$ composites is affected by two kinds of effects: adsorption effect by MWCNTs and photocatalytic effect by $TiO_2$. Finally, the photocatalytic effect increases due to photo-induced-electron absorption effect by MWCNTs and electron trap effect by Pt metal.

Keywords

References

  1. F. Stuber, J. Font, A. Fortuny, C. Bengoa, A. Eftaxias, A. Fabregat, Topics Catal. 33 (2005) 3. https://doi.org/10.1007/s11244-005-2497-1
  2. S. Iijima, Nature 354 (1991) 56. https://doi.org/10.1038/354056a0
  3. P.M. Ajayan, S. Iijima, Nature 361 (1993) 333. https://doi.org/10.1038/361333a0
  4. T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Nature 382 (1996) 54. https://doi.org/10.1038/382054a0
  5. H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R. Smalley, Nature 384 (1996) 147. https://doi.org/10.1038/384147a0
  6. P.M. Ajayan, Chem. Rev. 99 (1999) 1787 https://doi.org/10.1021/cr970102g
  7. T. Kopac, F.O. Erdogan, J. Ind. Eng. Chem. 15 (2009) 730. https://doi.org/10.1016/j.jiec.2009.09.054
  8. P. Serp, M. Corrias, P. Kalck, Appl. Catal. A 253 (2003) 337. https://doi.org/10.1016/S0926-860X(03)00549-0
  9. Z. Liu, X. Lin, J.Y. Lee, W. Zhang, M. Han, L.M. Gan, Langmuir 18 (2002) 4054. https://doi.org/10.1021/la0116903
  10. C. Wang, M. Waje, X. Wang, J.M. Tang, R.C. Haddon, Y.S. Yan, Nano Lett. 4 (2004) 345. https://doi.org/10.1021/nl034952p
  11. J.M. Planeix, N. Coustel, B. Coq, V. Brotons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P.M. Ajayan, J. Am. Chem. Soc. 116 (1994) 7935. https://doi.org/10.1021/ja00096a076
  12. J.P. Tessonnier, L. Pesant, G. Ehret, M.J. Ledoux, C. Pham-Huu, Appl. Catal. A 288 (2005) 203. https://doi.org/10.1016/j.apcata.2005.04.034
  13. J. Garcia, H.T. Gomes, P. Serp, P. Kalck, J.L. Figueiredo, J.L. Faria, Catal. Today 102-103 (2005) 101. https://doi.org/10.1016/j.cattod.2005.02.013
  14. H.T. Gomes, P.V. Samant, P. Serp, P. Kalck, J.L. Figueiredo, J.L. Faria, Appl. Catal. B 54 (2004) 175. https://doi.org/10.1016/j.apcatb.2004.06.009
  15. G. Ovejero, J.L. Sotelo, M.D. Romero, A. Rodriguez, M.A. Ocaria, G. Rodriguez, J. Garcia, Ind. Eng. Chem. Res. 45 (2006) 2206. https://doi.org/10.1021/ie051079p
  16. J. Garcia, H.T. Gomes, P. Serp, P. Kalck, J.L. Figueiredo, J.L. Faria, Carbon 44 (2006) 2384. https://doi.org/10.1016/j.carbon.2006.05.035
  17. M.A. Fox, M.T. Dulay, Chem. Rev. 93 (1993) 341. https://doi.org/10.1021/cr00017a016
  18. A. Yamakata, T. Ishibashi, H. Onishi, J. Phys. Chem. B 106 (2002) 9122. https://doi.org/10.1021/jp025993x
  19. G.S. Wong, D.D. Kragten, J.M. Vohs, J. Phys. Chem. B 105 (2001) 1366. https://doi.org/10.1021/jp003691u
  20. M.L. Chen, W.C. Oh, J. Korean Cryst. Growth Cryst. Technol. 17 (2007) 23.
  21. M.L. Chen, J.S. Bae, W.C. Oh, Bull. Korean Chem. Soc. 27 (2006) 1423. https://doi.org/10.5012/bkcs.2006.27.9.1423
  22. M.L. Chen, W.C. Oh, Bull. Korean Chem. Soc. 29 (2008) 159. https://doi.org/10.5012/bkcs.2008.29.1.159
  23. M.L. Chen, F.J. Zhang, W.C. Oh, Anal. Sci. Technol 21 (2008) 553.
  24. Z.H. Zhang, Y. Yuan, L.H. Liang, Y.J. Fang, Y.X. Cheng, H.C. Ding, G.Y. Shi, L.T. Jin, Ultrason. Sonochem. 15 (2008) 370. https://doi.org/10.1016/j.ultsonch.2007.09.017
  25. M.L. Chen, C.S. Lim, W.C. Oh, J. Ceram. Proc. Res. 8 (2007) 119.
  26. M.L. Chen, F.J. Zhang, W.C. Oh, J. Korean Ceram. Soc. 45 (2008) 651. https://doi.org/10.4191/KCERS.2008.45.1.651
  27. W.C. Oh, J. Korean Ceram. Soc. 46 (2009) 234. https://doi.org/10.4191/KCERS.2009.46.3.234
  28. T. Onoe, S. Iwamoto, M. Inoue, Catal. Commun. 8 (2007) 701. https://doi.org/10.1016/j.catcom.2006.08.018
  29. H.Q. Song, X.P. Qiu, F.S. Li, Electrochim. Acta 53 (2008) 3708. https://doi.org/10.1016/j.electacta.2007.11.080
  30. M. Inagaki, Y. Hirose, T. Matsunaga, T. Tsumura, M. Toyoda, Carbon 41 (2003) 2619. https://doi.org/10.1016/S0008-6223(03)00340-3
  31. M.L. Chen, J.S. Bae, W.C. Oh, Anal. Sci. Technol. 19 (2006) 460.
  32. W.C. Oh, A.R. Jung, W.B. Ko, Mater. Sci. Eng. C 29 (2009) 1338. https://doi.org/10.1016/j.msec.2008.10.034
  33. M.L. Chen, F.J. Zhang, W.C. Oh, New Carbon Mater. 24 (2009) 159. https://doi.org/10.1016/S1872-5805(08)60045-1
  34. I.K. Konstantinou, T.A. Albanis, Appl. Catal. B 49 (2004) 1. https://doi.org/10.1016/j.apcatb.2003.11.010
  35. M.A. Fox, Chemtech 22 (1992) 680.
  36. D. Hufschmidt, D. Bahnemann, J.J. Testa, C.A. Emilio, M.I. Litter, J. Photochem. Photobiol. A 148 (2002) 223. https://doi.org/10.1016/S1010-6030(02)00048-5
  37. A.L. Linsebigler, G.Q. Lu, J.T. Yates, Chem. Rev. 95 (1995) 735. https://doi.org/10.1021/cr00035a013
  38. V. Subramanian, E.E. Wolf, P.V. Kamat, Langmuir 19 (2003) 469. https://doi.org/10.1021/la026478t
  39. C.M. Wang, A. Heller, H. Gerischer, J. Am. Chem. Soc. 114 (1992) 5230. https://doi.org/10.1021/ja00039a039

Cited by

  1. The Improved Photocatalytic Properties of Methylene Blue for V2O3/CNT/TiO2Composite under Visible Light vol.2010, pp.None, 2010, https://doi.org/10.1155/2010/264831
  2. Photodegradation of MB on Fe/CNT-TiO2 Composite Photocatalysts Under Visible Light vol.20, pp.5, 2010, https://doi.org/10.3740/mrsk.2010.20.5.246
  3. Promoting Effect of MgO in the Photodegradation of Methylene Blue Over MgO/MWCNT/TiO2 Photocatalyst vol.20, pp.7, 2010, https://doi.org/10.3740/mrsk.2010.20.7.345
  4. Synthesis and highly visible-induced photocatalytic activity of CNT-CdSe composite for methylene blue solution vol.6, pp.1, 2010, https://doi.org/10.1186/1556-276x-6-398
  5. Photodegradation of organic dyes over nickel distributed CNT/TiO2 composite synthesized by a simple sol-gel method vol.29, pp.2, 2011, https://doi.org/10.2478/s13536-011-0023-7
  6. Synthesis and Characterization of Metal (Pt, Pd and Fe)-graphene Composites vol.48, pp.2, 2011, https://doi.org/10.4191/kcers.2011.48.2.147
  7. Microstructural of Cr/MWCNT Composites and its Catalysis in Synthesis of Biodiesel vol.455, pp.None, 2010, https://doi.org/10.4028/www.scientific.net/amr.455-456.1053
  8. Facile Synthesis, Characterization and Photocatalytic Activity of MWCNT-Supported Metal Sulfide Composites under Visible Light Irradiation vol.49, pp.2, 2010, https://doi.org/10.4191/kcers.2012.49.2.155
  9. Photocatalytic Degradation of Methylene Blue by Pd/MWCNT/TiO2 under UV and Visible Light Irradiation vol.49, pp.6, 2010, https://doi.org/10.4191/kcers.2012.49.6.511
  10. Synthesis of reduced graphene oxide/Cu nanoparticle composites and their tribological properties vol.3, pp.48, 2010, https://doi.org/10.1039/c3ra42478b
  11. Characterization of Graphene Nanosheets as Electrode Material and Their Performances for Electric Double-Layer Capacitors vol.21, pp.6, 2010, https://doi.org/10.1080/1536383x.2011.643420
  12. A novel visible-light-response plasmonic photocatalyst CNT/Ag/AgBr and its photocatalytic properties vol.15, pp.16, 2010, https://doi.org/10.1039/c3cp44104k
  13. Study of solid/gas phase photocatalytic reactions by electron ionization mass spectrometry vol.49, pp.8, 2010, https://doi.org/10.1002/jms.3396
  14. Photocatalytic activity of electrophoretically deposited (EPD) TiO2 coatings vol.50, pp.14, 2010, https://doi.org/10.1007/s10853-015-9022-0
  15. A Facile Preparation of Graphene-Based MxSy Visible Light Driven Photocatalyst and Study of Photochemically Generating of Oxygen Species vol.45, pp.11, 2015, https://doi.org/10.1080/15533174.2013.865234
  16. Preparation and microstructural properties study on cement composites reinforced with multi-walled carbon nanotubes vol.49, pp.1, 2015, https://doi.org/10.1177/0021998313514873
  17. Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes vol.6, pp.3, 2015, https://doi.org/10.1016/j.jare.2014.06.001
  18. Low-temperature Synthesis of Graphene-CdLa2S4 Nanocomposite as Efficient Visible-light-active Photocatalysts vol.52, pp.3, 2015, https://doi.org/10.4191/kcers.2015.52.3.173
  19. Hexagonal Boron Nitride Coated Carbon Nanotubes: Interlayer Polarization Improved Field Emission vol.7, pp.26, 2010, https://doi.org/10.1021/acsami.5b03492
  20. TiO2-based Photocatalysis: Toward Visible Light-Responsive Photocatalysts Through Doping and Fabrication of Carbon-Based Nanocomposites vol.42, pp.4, 2010, https://doi.org/10.1080/10408436.2016.1211507
  21. Influence of modified CNT-Ag nanocomposite addition on photocatalytic degradation of methyl orange by mesoporous TiO2 vol.47, pp.8, 2010, https://doi.org/10.1080/24701556.2017.1284106
  22. Exploration of Ag decoration and Bi doping on the photocatalytic activity α-Fe2 O3 under simulated solar light irradiation vol.96, pp.8, 2010, https://doi.org/10.1002/cjce.23122
  23. Designing a High‐Performance Lithium–Sulfur Batteries Based on Layered Double Hydroxides–Carbon Nanotubes Composite Cathode and a Dual‐Functional Graphene–Polypropylene vol.28, pp.3, 2010, https://doi.org/10.1002/adfm.201704294
  24. Effect on different TiO2 photocatalyst supports on photodecolorization of synthetic dyes: a review vol.16, pp.1, 2019, https://doi.org/10.1007/s13762-018-1857-x
  25. A colloidal heterostructured quantum dot sensitized carbon nanotube-TiO2 hybrid photoanode for high efficiency hydrogen generation vol.4, pp.2, 2010, https://doi.org/10.1039/c8nh00227d
  26. Transparent Cobalt Selenide/Graphene Counter Electrode for Efficient Dye-Sensitized Solar Cells with Co2+/3+-Based Redox Couple vol.12, pp.40, 2010, https://doi.org/10.1021/acsami.0c08220
  27. Photoelectrochemical performance of MWCNT-Ag-ZnO ternary hybrid: a study of Ag loading and MWCNT garnishing vol.56, pp.14, 2010, https://doi.org/10.1007/s10853-021-05821-5
  28. Water Treatment from MB Using Zn-Ag MWCNT Synthesized by Double Arc Discharge vol.14, pp.23, 2010, https://doi.org/10.3390/ma14237205