DOI QR코드

DOI QR Code

Synthesis and characterization of polylactide-poly(methyl methacrylate) copolymer by combining of ROP and AGET ATRP

  • Choochottiros, Chantiga (Department of Polymer Science and Engineering, Inha University) ;
  • Park, Eunha (Department of Polymer Science and Engineering, Inha University) ;
  • Chin, In-Joo (Department of Polymer Science and Engineering, Inha University)
  • Published : 2012.05.25

Abstract

Block copolymers of polylactide (PLA) and poly(methyl methacrylate) (PLA-PMMA) were synthesized by the combination of ring-opening polymerization (ROP) and activator generated by electron transfer for atom transfer radical polymerization (AGET ATRP), where PLA was prepared as macroinitiator with active bromo end group (PLA-Br). Tin octoate ($Sn(oct)_{2}$) and benzyl alcohol were applied as the initiation system for ROP of lactide. During AGET ATRP, copper (II) chloride ($CuCl_{2}$) with N,N,N',N",N"- pentamethyl-diethylenetriamine (PMDETA) was used as the catalyst system including Sn(oct)2 as reducing agent. At the feed ratio [PLA-Br]/[$CuCl_{2}$]/[PMDETA]/[$Sn(oct)_{2}$]/[MMA] of 1/1/9.6/0.45/100, the mole fraction of the PMMA block was 0.6 as determined by $^{1}H$ NMR. Thermal stability of PLA was enhanced by incorporating of PMMA as block copolymers. In addition, blend between of PLA and PLA-PMMA copolymer was investigated and 5 phr of PLA-PMMA showed optimum condition to decrease in Young's modulus and increase in impact strength.

Keywords

References

  1. I. Noda, M.M. Satkowski, A.E. Dowrey, C. Marcott, Macromol. Biosci. 4 (2004) 269.
  2. C.S. Wu, H.T. Liao, Polymer 46 (2005) 10017. https://doi.org/10.1016/j.polymer.2005.08.056
  3. P. Sarazin, G. Li, W.J. Orts, B.D. Favis, Polymer 49 (2008) 599. https://doi.org/10.1016/j.polymer.2007.11.029
  4. E.J. Choi, B. Son, T.S. Hwang, E. Hwang, J. Ind. Eng. Chem. (2011).
  5. Z.Z. Yu, Y.C. Ou, G.H. Hu, J. Appl. Polym. Sci. 69 (1998) 1711. https://doi.org/10.1002/(SICI)1097-4628(19980829)69:9<1711::AID-APP4>3.0.CO;2-E
  6. O.K. Muratoglu, A.S. Argon, R.E. Cohen, M. Weinberg, Polymer 36 (1995) 4771.
  7. M. Baiardo, G. Frisoni, M. Scandola, M. Rimelen, D. Lips, K. Ruffieux, E. Winter-mantel, J. Appl. Polym. Sci. 90 (2003) 1731. https://doi.org/10.1002/app.12549
  8. H. Zhang, H. Xia, J. Wang, Y. Li, J. Control. Release 139 (2009) 31. https://doi.org/10.1016/j.jconrel.2009.05.037
  9. C.H. Ho, C.H. Wang, C.I. Lin, Y.D. Lee, Polymer 49 (2008) 3902. https://doi.org/10.1016/j.polymer.2008.06.054
  10. S. Fujii, T. Matsumoto, K. Ueda, T. Yano, US patent, US20090018237, 2009.
  11. C. Cygan, J.M. Brake, WIPO. WO2008/063988 A2, 2008.
  12. J.L. Eguiburu, M. Fernandez-Berridi, Polymer 37 (1996) 3615. https://doi.org/10.1016/0032-3861(96)00184-X
  13. H. Shinoda, K. Matyjaszewski, Macromolecules 34 (2001) 6243. https://doi.org/10.1021/ma0105791
  14. R. Patel, S.J. Im, Y.T. Ko, J.H. Kim, J. Ind. Eng. Chem. 15 (2009) 299.
  15. J.T. Park, J.A. Seo, S.H. Ahn, J.H. Kim, S.W. Kang, J. Ind. Eng. Chem. 16 (2010) 517. https://doi.org/10.1016/j.jiec.2010.03.030
  16. K. Matyjaszewski, W. Jakubowski, Macromolecules 38 (2005) 4139. https://doi.org/10.1021/ma047389l
  17. D.D. Perrin, W.L.F. Armarego, Purification of Polymers, 3rd ed., Pergamon Press, Great Britain, 1988.
  18. Y. Zhao, X. Shuai, C. Chen, F. Xi, Macromolecules 37 (2004) 8854. https://doi.org/10.1021/ma048303r
  19. B. Braun, J.R. Dorgan, S.F. Dec, Macromolecules 39 (2006) 9302. https://doi.org/10.1021/ma061922a
  20. S.H. Lee, S.H. Kim, Y.K. Han, Y.H. Kim, J. Polym. Sci. A: Polym. Chem. 39 (2001) 973.
  21. K. Tharanikkarasu, H. Verma, W. Jang, S.K. Lee, J. Seo, S. Baek, H. Han, J. Appl. Polym. Sci. 108 (2008) 1538. https://doi.org/10.1002/app.27642
  22. Z. Kulinski, E. Piorkowska, Polymer 46 (2005) 10290. https://doi.org/10.1016/j.polymer.2005.07.101
  23. K.S. Anderson, M.A. Hillmyer, Polymer 47 (2006) 2030. https://doi.org/10.1016/j.polymer.2006.01.062
  24. W. Wang, W. Ren, L. Jiang, Y. Dan, J. Appl. Polym. Sci. 118 (2010) 2379.
  25. H. Chen, M. Pyda, P. Cebe, Thermochim. Acta 492 (2009) 61. https://doi.org/10.1016/j.tca.2009.04.023
  26. G. Zhang, J. Zhang, S. Wang, D. Shen, J. Polym. Sci. B: Polym. Phys. 41 (2003) 23. https://doi.org/10.1002/polb.10353
  27. K. Ute, N. Miyatake, K. Hatada, Polymer 36 (1995) 1415. https://doi.org/10.1016/0032-3861(95)95919-R
  28. R. Krishnan, K.S.V. Srinivasan, J. Appl. Polym. Sci. 97 (2005) 989. https://doi.org/10.1002/app.21821
  29. C.D. Borman, A.T. Jackson, A. Bunn, A.L. Cutter, D.J. Irvine, Polymer 41 (2000) 6015. https://doi.org/10.1016/S0032-3861(00)00020-3
  30. D. Colombani, M. Steenbock, M. Klapper, K. Mullen, Macromol. Rapid Commun. 18 (1997) 243. https://doi.org/10.1002/marc.1997.030180305
  31. J. Norman, S.C. Moratti, A.T. Slark, D.J. Irvine, A.T. Jackson, Macromolecules 35 (2002) 8954. https://doi.org/10.1021/ma011011v
  32. N. Kim, Y.S. Yun, J. Lee, C. Choochottiros, H. Pyo, I. Chin, H. Jin, Macromol. Res. 19 (2011) 943. https://doi.org/10.1007/s13233-011-0906-9

Cited by

  1. Covalent functionalization of silica nanoparticles with poly(N-isopropylacrylamide) employing thiol-ene chemistry and activator regenerated by electron transfer ATRP protocol vol.49, pp.4, 2012, https://doi.org/10.1007/s10853-013-7833-4
  2. Influence of Boehmite Nanoparticle Loading on the Mechanical, Thermal, and Rheological Properties of Biodegradable Polylactide/Poly(ϵ‐caprolactone) Blends vol.300, pp.1, 2012, https://doi.org/10.1002/mame.201400212
  3. PLLA-block-PMMA 공중합수지의 합성 및 이를 포함하는 PLA 이축연신 필름의 특성 vol.26, pp.3, 2012, https://doi.org/10.14478/ace.2014.1121
  4. Methods of controlled radical polymerization for the synthesis of polymer brushes vol.57, pp.1, 2012, https://doi.org/10.1134/s181123821501004x
  5. Effect of Polycaprolactone-co-Polylactide Copolyesters' Arms in Enhancing Optical Transparent PLA Toughness vol.24, pp.9, 2016, https://doi.org/10.1007/s13233-016-4118-1
  6. Modification of epoxidized natural rubber as a PLA toughening agent vol.136, pp.48, 2012, https://doi.org/10.1002/app.48267
  7. Indium-Catalyzed Block Copolymerization of Lactide and Methyl Methacrylate by Sequential Addition vol.10, pp.None, 2012, https://doi.org/10.1021/acscatal.0c01365
  8. Amphiphilic poly(lactic acid) membranes with low fouling and enhanced hemodiafiltration vol.259, pp.None, 2012, https://doi.org/10.1016/j.seppur.2020.118124