DOI QR코드

DOI QR Code

Comparison of CFD results and experimental data in a fixed bed Fischer-Tropsch synthesis reactor

  • Miroliaei, Ali Reza (Department of Chemical Engineering, University of Sistan and Baluchestan) ;
  • Shahraki, Farhad (Department of Chemical Engineering, University of Sistan and Baluchestan) ;
  • Atashi, Hossein (Department of Chemical Engineering, University of Sistan and Baluchestan) ;
  • Karimzadeh, Ramin (Department of Chemical Engineering, University of Tarbiat Modares)
  • Published : 2012.11.25

Abstract

Hydrogenation of carbon monoxide in a fixed bed Fischer-Tropsch reactor has been simulated using computational fluid dynamics. The geometry of fixed bed reactor was modeled using the discrete packing method. The effects of reaction temperature, feed flow rate and $H_2/CO$ ratio on CO conversion and product selectivity were investigated. The mass fraction of products was also predicted by using the CFD model at different $H_2/CO$ ratios. It was observed that the CO conversion increased with increasing temperature, while decreased with increasing mass flow rate. The selectivity and mass fraction of products also increased with increasing temperature and $H_2/CO$ ratio.

Keywords

References

  1. M. Ahmadi Marvast, M. Sohrabi, S. Zarrinpashne, Gh. Baghmisheh, Chemical Engineering and Technology 28 (2005) 78. https://doi.org/10.1002/ceat.200407013
  2. A. Jess, C. Kern, Chemical Engineering and Technology 32 (2009) 1164. https://doi.org/10.1002/ceat.200900131
  3. S.H. Kang, J.W. Bae, K.J. Woo, P.S. Sai Prasad, K.W. Jun, Fuel Processing Technology 91 (2010) 399. https://doi.org/10.1016/j.fuproc.2009.05.023
  4. G. Fan, B. Zou, S. Cheng, L. Zheng, Journal of Industrial and Engineering Chemistry 16 (2010) 220. https://doi.org/10.1016/j.jiec.2009.08.009
  5. Y.Y. Ji, H.W. Xiang, J.L. Yang, Y.Y. Xu, Y.W. Li, B. Zhong, Applied Catalysis A: General 214 (2001) 77. https://doi.org/10.1016/S0926-860X(01)00480-X
  6. S.H. Kang, K.J. Woo, K.W. Jun, Y. Kang, Korean Journal of Chemical Engineering 26 (2009) 1533. https://doi.org/10.1007/s11814-009-0260-1
  7. A.P. Raje, B.H. Davis, Catalysis Today 36 (1997) 335. https://doi.org/10.1016/S0920-5861(96)00245-3
  8. E. van Steen, H. Schulz, Applied Catalysis 186 (1999) 309. https://doi.org/10.1016/S0926-860X(99)00151-9
  9. J.W. Bae, S.J. Park, S.H. Kang, Y.J. Lee, K.W. Jun, Y.W. Rhee, Journal of Industrial and Engineering Chemistry 15 (2009) 798. https://doi.org/10.1016/j.jiec.2009.09.002
  10. H.E. Atwood, C.O. Bennett, Industrial and Engineering Chemistry Process Design and Development 18 (1979) 163. https://doi.org/10.1021/i260069a023
  11. G. Bub, M. Baerns, B. Bussemeier, C. Frohning, Chemical Engineering Science 33 (1980) 348.
  12. Q.S. Liu, Z.X. Zhang, J.L. Zhou, Journal of Natural Gas Chemistry 8 (1999) 137.
  13. J. Pina, N.S. Schbib, V. Bucala, D.O. Borio, Industrial and Engineering Chemistry Research 40 (2001) 5215. https://doi.org/10.1021/ie001065d
  14. Y.N. Wang, Y.Y. Xu, Y.W. Li, Y.L. Zhao, B.J. Zhang, Chemical Engineering Science 58 (2003) 867. https://doi.org/10.1016/S0009-2509(02)00618-8
  15. R. Guettel, T. Turek, Chemical Engineering Science 64 (2009) 955. https://doi.org/10.1016/j.ces.2008.10.059
  16. M.R. Rahimpour, M.H. Khademi, A.M. Bahmanpour, Chemical Engineering Science 65 (2010) 6206. https://doi.org/10.1016/j.ces.2010.09.002
  17. M. Zakeri, A. Samimi, M. Khorram, H. Atashi, A. Mirzaei, Powder Technology 200 (2010) 164. https://doi.org/10.1016/j.powtec.2010.02.021
  18. J.A.M. Kuipers, W.P.M. van Swaaij, Advances in Chemical Engineering 24 (1998) 227.
  19. Y. Jiang, M.R. Khadilkar, M.H. Al-Dahhan, M.P. Dudukovic, AIChE Journal 48 (2002) 716. https://doi.org/10.1002/aic.690480407
  20. D.I. Gerogiorgis, B.E. Ydstie, Chemical Engineering Research and Design 86 (2005) 603.
  21. A.G. Dixon, M.E. Taskin, E.H. Stitt, M. Nijemeisland, Chemical Engineering Science 62 (2007) 4963. https://doi.org/10.1016/j.ces.2006.11.052
  22. L. Shi, D.J. Bayless, M.E. Prudich, International Journal of Hydrogen Energy 34 (2009) 7666. https://doi.org/10.1016/j.ijhydene.2009.07.039
  23. G. Arzamendi, P.M. Dieguez, M. Montes, J.A. Odriozola, E.F.S. Aguiar, L.M. Gandia, Chemical Engineering Journal 154 (2009) 168. https://doi.org/10.1016/j.cej.2009.01.035
  24. J. Esteban Duran, M. Mohseni, F. Taghipour, Chemical Engineering Science 65 (2010) 1201. https://doi.org/10.1016/j.ces.2009.09.075
  25. H. Atashi, F. Siami, A.A. Mirzaei, M. Sarkari, Journal of Industrial and Engineering Chemistry 16 (2010) 952. https://doi.org/10.1016/j.jiec.2010.04.005
  26. R. Zennaro, M. Tagliabue, C.H. Bartholomew, Catalysis Today 58 (2000) 309. https://doi.org/10.1016/S0920-5861(00)00264-9
  27. H. Atashi, M. Mansouri, S.H. Hosseini, M. Khorram, A.A. Mirzaei, M. Karimi, G. Mansouri, Korean Journal of Chemical Engineering 29 (2012) 304. https://doi.org/10.1007/s11814-011-0189-z
  28. I.C. Yates, C.N. Satterfield, Energy and Fuels 5 (1991) 158.
  29. A.G. Dixon, M. Nijemeisland, E.H. Stitt, Industrial and Engineering Chemistry Research 44 (2001) 6342.
  30. A.G. Dixon, M. Nijemeisland, E.H. Stitt, Advances in Chemical Engineering 31 (2006) 307.
  31. ANSYS, Inc., ANSYS FLUENT 12.0.16, Theory Guide: Species Transport and Finiterate Chemistry, ANSYS, Inc., 2009.
  32. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, DC, 1980.
  33. H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics, The Finite Volume Method, Longman, Essex, England, 1995.

Cited by

  1. CFD analysis of hot spot formation through a fixed bed reactor of Fischer-Tropsch synthesis vol.2, pp.1, 2012, https://doi.org/10.1080/23311916.2015.1006016
  2. 전통적인 유체역학 방법론과 CFD 결합을 통한 Fischer-Tropsch 고정층 반응기 내부 흐름의 체계적 모델링 vol.20, pp.4, 2012, https://doi.org/10.7842/kigas.2016.20.4.65
  3. Effect of particle shape on fluid flow and heat transfer for methane steam reforming reactions in a packed bed vol.63, pp.1, 2017, https://doi.org/10.1002/aic.15542
  4. Multiscale and Multiphase Model of Fixed Bed Reactors for Fischer–Tropsch Synthesis: Intensification Possibilities Study vol.56, pp.36, 2012, https://doi.org/10.1021/acs.iecr.7b02467
  5. PIV measurements and CFD simulations of the particle-scale flow distribution in a packed bed vol.374, pp.None, 2012, https://doi.org/10.1016/j.cej.2019.05.053
  6. CFD s tudy on partial oxidation of methane in fixed‐bed reactor vol.98, pp.3, 2012, https://doi.org/10.1002/cjce.23644
  7. Study of mechanism and kinetic modeling of CO hydrogenation reaction over the impregnated Co‐Ni/Al 2 O 3 catalyst vol.67, pp.7, 2012, https://doi.org/10.1002/jccs.201900526
  8. Simulation of the Fluid-Solid Noncatalytic Reaction Based on the Structure-Based Mass-Transfer Model: Shrinking Core Reaction vol.59, pp.40, 2012, https://doi.org/10.1021/acs.iecr.0c02805