DOI QR코드

DOI QR Code

Preparation and high visible-light-induced photocatalytic activity of CdSe and $CdSe-C_{60}$ nanoparticles

  • Meng, Ze-Da (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Zhu, Lei (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Published : 2012.11.25

Abstract

Cadmium selenide-fullerene ($CdSe-C_{60}$) composite was synthesized by an easy hydrothermal method derived from fullerene as a stating material. X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray analysis, transmission electron microscopy, and a UV-vis diffuse-reflectance spectrophotometer were used. The as-synthesized $CdSe-C_{60}$ composite efficiently catalyzed the photodegradation of different dyes in aqueous solutions under visible-light irradiation, exhibiting high photocatalytic activity. UV-vis diffuse reflectance spectroscopy shows a band gap for CdSe of 1.68 eV. Photodegradation effect about samples was researched by degradation different dyes, different concentration of MB solutions and at different pH environment. The composites show efficient visiblelight photocatalytic activity to degrade aqueous methylene blue. The degradation effect of $CdSe-C_{60}$ is higher than that of pure CdSe.

Keywords

References

  1. A. Fujishima, K. Honda, Nature 238 (1972) 37.
  2. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chemical Reviews 95 (1995) 69. https://doi.org/10.1021/cr00033a004
  3. W.C. Oh, Journal of Photocatalysis Science 1 (2010) 29.
  4. Z.D. Meng, W.C. Oh, Asian Journal of Chemistry 23 (2011) 847.
  5. W.C. Oh, F.J. Zhang, M.L. Chen, Journal of Industrial and Engineering Chemistry 16 (2010) 299. https://doi.org/10.1016/j.jiec.2009.09.065
  6. K. Yeong, S. Samer, J.H. Munir, E.M. Thomas, Journal of the American Chemical Society 113 (1991) 9561. https://doi.org/10.1021/ja00025a021
  7. L.Q. Jing, S.D. Li, S. Song, L.P. Xue, H.G. Fu, Solar Energy Materials and Solar Cells 92 (2008) 1030. https://doi.org/10.1016/j.solmat.2008.03.003
  8. S. Bae, E. Shim, J. Yoon, H. Joo, Solar Energy Materials and Solar Cells 92 (2008) 402. https://doi.org/10.1016/j.solmat.2007.09.019
  9. W.K. Ho, J.C. Yu, Journal of Molecular Catalysis A: Chemical 247 (2006) 268. https://doi.org/10.1016/j.molcata.2005.11.057
  10. Z.D. Meng, K. Zhang, W.C. Oh, Korean Journal of Materials Research 20 (2010) 228. https://doi.org/10.3740/MRSK.2010.20.4.228
  11. Z.D. Meng, W.C. Oh, Ultrasonics Sonochemistry 18 (2011) 757. https://doi.org/10.1016/j.ultsonch.2010.10.008
  12. Z.D. Meng, M.L. Chen, F.J. Zhang, L. Zhu, J.G. Choi, W.C. Oh, Asian Journal of Chemistry 23 (2011) 2327.
  13. Z.G. Zou, J.H. Ye, K. Sayama, H. Arakawa, Nature 414 (2001) 625. https://doi.org/10.1038/414625a
  14. N. Nakashima, T. Ishii, M. Shirakusa, T. Nakanishi, H. Murakami, T. Sagara, Chemistry - A European Journal 7 (2001) 1766. https://doi.org/10.1002/1521-3765(20010417)7:8<1766::AID-CHEM17660>3.0.CO;2-F
  15. R.C. Haddon, A.F. Hebard, M.J. Rosseinsky, D.W. Murphy, Nature 350 (1991) 320. https://doi.org/10.1038/350320a0
  16. B. Su, K.L. Choy, Thin Solid Films 361-362 (2000) 102.
  17. S.A. Empedocles, D.J. Norris, M.G. Bawendi, Physical Review Letters 77 (1996) 3873. https://doi.org/10.1103/PhysRevLett.77.3873
  18. M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science 281 (1998) 2013. https://doi.org/10.1126/science.281.5385.2013
  19. X.W. Zhang, M.H. Zhou, L.C. Lei, Carbon 43 (2005) 1700. https://doi.org/10.1016/j.carbon.2005.02.013
  20. T.S. Ahmadi, Z.L. Wang, T.C. Green, A. Henglein, M.A. El-Sayed, Science 272 (1996) 1924. https://doi.org/10.1126/science.272.5270.1924
  21. W. Huynh, X. Peng, A.P. Alivisatos, Advanced Materials 11 (1999) 923. https://doi.org/10.1002/(SICI)1521-4095(199908)11:11<923::AID-ADMA923>3.0.CO;2-T
  22. J. Fang, J. Wu, X. Lu, Y. Shen, Z. Lu, Chemical Physics Letters 270 (1997) 145. https://doi.org/10.1016/S0009-2614(97)00333-3
  23. P.V. Kamat, Chemical Reviews 93 (1993) 267. https://doi.org/10.1021/cr00017a013
  24. B. Su, K.L. Choy, Thin Solid Films 361 (2000) 102.
  25. K.R. Murali, V. Swaminathan, D.C. Trivedi, Solar Energy Materials and Solar Cells 81 (2004) 113. https://doi.org/10.1016/j.solmat.2003.08.019
  26. K.R. Patil, D.V. Paranjape, S.D. Sathaye, A. Mitra, S.R. Padalkar, A.B. Mandale, Materials Letters 46 (2000) 81. https://doi.org/10.1016/S0167-577X(00)00146-4

Cited by

  1. Irradiation Induced Changes in Semiconducting Thin Films vol.341, pp.None, 2012, https://doi.org/10.4028/www.scientific.net/ddf.341.181
  2. Preparation of ZnS-Graphene/TiO2Composites Designed for Their High Photonic Effect and Photocatalytic Activity Under Visible Light vol.22, pp.7, 2014, https://doi.org/10.1080/1536383x.2012.717556
  3. Novel PbSe/Graphene Nanocomposites Synthesized With Ultrasonic Assisted Method and their Enhanced Photocatalytic Activity vol.45, pp.4, 2012, https://doi.org/10.1080/15533174.2013.841221
  4. Differently Shaped Au Nanoparticles: A Case Study on the Enhancement of the Photocatalytic Activity of Commercial TiO 2 vol.8, pp.1, 2012, https://doi.org/10.3390/ma8010162
  5. Enhanced photocatalytic performance of an Ag3PO4 photocatalyst via fullerene modification: first-principles study vol.18, pp.4, 2012, https://doi.org/10.1039/c5cp05699c
  6. Enhancement removal of tartrazine dye using HCl-doped polyaniline and TiO2-decorated PANI particles vol.3, pp.8, 2012, https://doi.org/10.1088/2053-1591/3/8/085301
  7. Sonocatalytic degradation of methylene blue by a novel graphene quantum dots anchored CdSe nanocatalyst vol.39, pp.None, 2017, https://doi.org/10.1016/j.ultsonch.2017.05.030
  8. Photodegradation of phenol red in the presence of oxyhydroxide of Fe(III) (Goethite) under artificial and a natural light : Photodegradation of phenol red vol.32, pp.3, 2012, https://doi.org/10.1111/wej.12333
  9. Review on the treatment of organic pollutants in water by ultrasonic technology vol.55, pp.None, 2012, https://doi.org/10.1016/j.ultsonch.2019.01.017
  10. Facile synthesis of novel microporous CdSe/SiO2 nanocomposites selective for removal of methylene blue dye by tandem adsorption and photocatalytic process vol.30, pp.19, 2012, https://doi.org/10.1007/s10854-019-02099-x
  11. Toxicity of cadmium selenide nanoparticles on the green microalgaChlorella vulgaris: inducing antioxidative defense response vol.26, pp.36, 2012, https://doi.org/10.1007/s11356-019-06675-w
  12. Recent Progress on Fullerene-Based Materials: Synthesis, Properties, Modifications, and Photocatalytic Applications vol.13, pp.13, 2012, https://doi.org/10.3390/ma13132924