DOI QR코드

DOI QR Code

Synthesis and characterization of $V-C_{60}/TiO_2$ photocatalysts designed for degradation of methylene blue

  • Oha, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Zhang, Feng-Jun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Chen, Ming-Liang (Department of Advanced Materials & Science Engineering, Hanseo University)
  • Received : 2009.06.06
  • Accepted : 2009.09.30
  • Published : 2010.03.25

Abstract

$C_{60}/TiO_2$ and $V-C_{60}/TiO_2$ composite photocatalysts were prepared with titanium(IV) n-butoxide (TNB) by a sol-gelmethod. Fullerenehad absorptive andsemiconducting properties,andvanadiumcouldenhance the photogenerated electron transfer. The $V-C_{60}/TiO_2$ composite shows a good photo-degradation activity. XRD patterns of the composites showed that the $C_{60}/TiO_2$ composite contained a mixture of anatase and rutile phase forms while the $V-C_{60}/TiO_2$ composite contained a typical single and clear anatase phase. The surface properties seen bySEMand FE-SEMpresent a characterization of the texture on $C_{60}/TiO_2$ and $V-C_{60}/TiO_2$ composites and showeda homogenous composition in the particles for the titaniumsources used. The EDX spectra for the elemental identification showed the presence of C and Ti with strongV peaks for the $V-C_{60}/TiO_2$ composite. From the photocatalytic results, the excellent activity of the $C_{60}/TiO_2$ and $V-C_{60}/TiO_2$ composites for degradation of methylene blue under UV irradiation could be attributed to both the effects between photocatalysis of the supported $TiO_2$ and charge transfer of the fullerene, and the introduction of vanadium to enhance the photogenerated electrons transfer.

Keywords

References

  1. R.L. Ziolli, W.F. Jardim, J. Photochem. Photobiol. A: Chem. 147 (2002) 205. https://doi.org/10.1016/S1010-6030(01)00600-1
  2. T. Ivanova, A. Harizanova, Mater. Res. Bull. 40 (2005) 411 https://doi.org/10.1016/j.materresbull.2004.12.007
  3. W.C. Oh, Y.M. Lee, W.B. Ko, J. Ind. Eng. Chem. 15 (2009) 190. https://doi.org/10.1016/j.jiec.2008.09.019
  4. S. Neatu, E. Sacaliuc-Parvulescu, F. Levy, V.I. Parvulescu, Catal. Today (2008), doi:10.1016/j.cattod.2008.08.034.
  5. M.R. Hoffmann, S.T. Martin,W.Y. Choi, D.W. Bahnemann, Chem. Rev. 95 (1995) 69. https://doi.org/10.1021/cr00033a004
  6. C. Minero, G. Marirlla, V. Maurino, E. Pelizzetti, Langmuir 16 (2000) 2632. https://doi.org/10.1021/la9903301
  7. C. Wang, D.F. Bahnemann, J.K. Dohrmann, Chem. Commun. 16 (2000) 1539.
  8. A. Stasko, V. Brezova, S. Biskupic, K.-P. Dinse, R. Grolo, M. Baumgarten, A. Gugel, P. Belik, J. Electronanal. Chem. 423 (1997) 131. https://doi.org/10.1016/S0022-0728(96)04693-1
  9. V. Brezova, A. Stasko, K.-D. Asmus, D.M. Guldi, J. Photochem. Photobiol. A: Chem. 117 (1998) 61. https://doi.org/10.1016/S1010-6030(98)00320-7
  10. A. Sclafani, M.N. Mozzanega, P. Pichat, J. Photochem. Photobiol. A: Chem. 59 (1991) 181. https://doi.org/10.1016/1010-6030(91)87006-H
  11. I.M. Arabatzis, T. Stergiopoulos, M.C. Bernard, D. Labou, S.G. Neophytides, P. Falaras, Appl. Catal. B: Environ. 42 (2003) 187. https://doi.org/10.1016/S0926-3373(02)00233-3
  12. I.M. Arabatzis, T. Stergiopoulos, D. Andreeva, S. Kitova, S.G. Neophytides, P. Falaras, J. Catal. 220 (2003) 127. https://doi.org/10.1016/S0021-9517(03)00241-0
  13. B. Sun, A.V. Vorontsov, P.G. Smirniotis, Langmuir 19 (2003) 3151. https://doi.org/10.1021/la0264670
  14. V. Vamathevan, R. Amal, D. Beydoun, G. Low, S. McEvoy, J. Photochem. Photobiol. A: Chem. 148 (2002) 233. https://doi.org/10.1016/S1010-6030(02)00049-7
  15. J. Wang, S. Uma, K.J. Klabunde, Appl. Catal. B: Environ. 48 (2004) 151. https://doi.org/10.1016/j.apcatb.2003.10.006
  16. B. O'Regan, D.T. Schwartz, J. Appl. Phys. 80 (1996) 4749. https://doi.org/10.1063/1.363412
  17. S.H. Lee, S. Pumprueg, B. Moudgil, W. Sigmund, Colloid Surf. B: Biointerfaces 40 (2005) 93. https://doi.org/10.1016/j.colsurfb.2004.05.005
  18. W.C. Oh, Environ. Eng. Res. 13 (2008) 85. https://doi.org/10.4491/eer.2008.13.2.085
  19. M.L. Chen, J.S. Bae, W.C. Oh, Bull. Korean Chem. Soc. 27 (2006) 1423. https://doi.org/10.5012/bkcs.2006.27.9.1423
  20. M.L. Chen, J.S. Bae, W.C. Oh, Anal. Sci. Technol. 19 (2006) 376.
  21. W.C. Oh, T.S. Park, Environ. Eng. Res. 12 (2007) 218. https://doi.org/10.4491/eer.2007.12.5.218
  22. F.J. Zhang, M.L. Chen, W.C. Oh, Mater. Res. Soc. Korea 18 (2008) 583. https://doi.org/10.3740/MRSK.2008.18.11.583
  23. W.C. Oh, M.L. Chen, Bull. Korean Chem. Soc. 29 (2008) 159. https://doi.org/10.5012/bkcs.2008.29.1.159
  24. V. Krishna, N. Noguchi, B. Koopman, B. Moudgil, J. Colloid Interface. Sci. 304 (2006) 166. https://doi.org/10.1016/j.jcis.2006.08.041
  25. D. Gust, T.A. Moore, A.L. Moore, J. Photochem. Photobiol. B: Biol. 58 (2000) 63. https://doi.org/10.1016/S1011-1344(00)00145-7
  26. T.L. Makarova, Semiconductors 35 (2001) 243. https://doi.org/10.1134/1.1356145
  27. H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, Nature 318 (1985) 162. https://doi.org/10.1038/318162a0
  28. R.C. Haddon, Science 261 (1993) 1545. https://doi.org/10.1126/science.261.5128.1545
  29. T. Hasobe, S. Hattori, P.V. Kamat, S. Fukuzumi, Tetrahedron 62 (2006) (1937). https://doi.org/10.1016/j.tet.2005.05.113
  30. S. Fukuzumi, H. Imahori, V. InBalzani, Electron Transfer in Chemistry, Wiley-VCH, Weinheim, New York, 2001, pp. 927-975.
  31. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerences and Carbon Nanotubes, Academic Press, Inc., California, 1996, pp. 413-458.
  32. M.K. Lim, S.R. Jang, R. Vittal, J. Lee, K.J. Kim, J. Photochem. Photobiol. A: Chem. 190 (2007) 128. https://doi.org/10.1016/j.jphotochem.2007.03.021
  33. V.I. Makarov, S.A. Kochubei, I.V. Khmelinskii, Chem. Phys. Lett. 355 (2002) 504. https://doi.org/10.1016/S0009-2614(02)00294-4
  34. K. Yu, J. Zhao, Y. Tian, M. Jiang, X. Ding, Y. Liu, Y. Zhu, Z. Wang, Mater. Lett. 59 (2005) 3563. https://doi.org/10.1016/j.matlet.2005.06.028
  35. W.C. Oh, A.R. Jung, J. Ceram. Korean Soc. 45 (2008) 150. https://doi.org/10.4191/KCERS.2008.45.3.150
  36. T. Tsumura, N. Kojitani, I. Izumi, N. Iwashita, M. Toyoda, M. Inagaki, J. Mater. Chem. 12 (2002) 1391. https://doi.org/10.1039/b201942f
  37. F.J. Maldonado-Hodar, C. Moreno-Castilla, J. Rivera-Utrilla, Appl. Catal. A: Gen. 203 (2000) 151. https://doi.org/10.1016/S0926-860X(00)00480-4
  38. W.C. Oh, M.L. Chen, J. Ceram. Process. Res. 9 (2008) 100.
  39. S.D. Sharma, K.K. Saini, C. Kant, C.P. Sharma, S.C. Jain, Appl. Catal. B: Environ. (2008), doi:10.1016/j.apcatb.2008.04.017.
  40. W.C. Oh, S.B. Han, J.S. Bae, Anal. Sci. Technol. 20 (2007) 279.
  41. J. Saien, S. Khezrianjoo, J. Hazard. Mater. 157 (2008) 269. https://doi.org/10.1016/j.jhazmat.2007.12.094
  42. R.P. Schwarzenbach, P.M. Gschwend, D.M. Imboden, Environmental Organic Chemistry, 2nd ed., John Wiley and Sons, England, 2002, p. 224.

Cited by

  1. Photodegradation of organic dyes over nickel distributed CNT/TiO2 composite synthesized by a simple sol-gel method vol.29, pp.2, 2011, https://doi.org/10.2478/s13536-011-0023-7
  2. The Photodegradation Effect of Organic Dye for Metal Oxide (Cr2O3, MgO and V2O3) Treated CNT/TiO2 Composites vol.32, pp.3, 2010, https://doi.org/10.5012/bkcs.2011.32.3.815
  3. Ag2Se-Graphene/TiO2 Nanocomposites, Sonochemical Synthesis and Enhanced Photocatalytic Properties Under Visible Light vol.33, pp.11, 2010, https://doi.org/10.5012/bkcs.2012.33.11.3761
  4. Degradation of Synthetic Dyeing Wastewater by Underwater Electrical Discharge Processes vol.15, pp.7, 2010, https://doi.org/10.1088/1009-0630/15/7/11
  5. Study of solid/gas phase photocatalytic reactions by electron ionization mass spectrometry vol.49, pp.8, 2010, https://doi.org/10.1002/jms.3396
  6. Enhanced photocatalytic performance of an Ag3PO4 photocatalyst via fullerene modification: first-principles study vol.18, pp.4, 2010, https://doi.org/10.1039/c5cp05699c
  7. Visible light responsive Bi2S3-graphene/TiO2 nanocomposites: one pot-hydrothermal synthesize and improved photocatalytic properties vol.28, pp.6, 2020, https://doi.org/10.1080/1536383x.2020.1711516
  8. Recent Progress on Fullerene-Based Materials: Synthesis, Properties, Modifications, and Photocatalytic Applications vol.13, pp.13, 2010, https://doi.org/10.3390/ma13132924
  9. Recent development and future prospects of TIO 2 photocatalysis vol.68, pp.5, 2010, https://doi.org/10.1002/jccs.202000465