DOI QR코드

DOI QR Code

Ultrafine Grained Cu-diamond Composites using High Pressure Torsion

고압비틀림 공정으로 제조된 구리-다이아몬드 초미세립 복합재료

  • Yoon, Eun-Yoo (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Lee, Dong-Jun (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Kim, Taek-Soo (Department of Rare Metals, Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Hyoung-Seop (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH))
  • 윤은유 (포항공과대학교 신소재공학과) ;
  • 이동준 (포항공과대학교 신소재공학과) ;
  • 김택수 (한국생산기술연구원 희소금속산업기술센터) ;
  • 김형섭 (포항공과대학교 신소재공학과)
  • Received : 2012.03.23
  • Accepted : 2012.04.18
  • Published : 2012.06.28

Abstract

In this work, powder metallurgy and severe plastic deformation by high-pressure torsion (HPT) approaches were combined to achieve both full density and grain refinement at the same time. Pure Cu powders were mixed with 5 and 10 vol% diamonds and consolidated into disc-shaped samples at room temperature by HPT at 1.25 GPa and 1 turn, resulting in ultrafine grained metallic matrices embedded with diamonds. Neither heating nor additional sintering was required with the HPT process so that in situ consolidation was successfully achieved at ambient temperature. Significantly refined grain structures of Cu metallic matrices with increasing diamond volume fractions were observed by electron backscatter diffraction (EBSD), which enhanced the microhardness of the Cu-diamond composites.

Keywords

References

  1. A. Buttner: Ind. Diamond Rev., 34 (1974) 89.
  2. M. W. Bailey and G. J. Bullen: Ind. Diamond Rev., 1 (1979) 56.
  3. E. W. Wong, P. E. Sheehan and C. M. Lieber: Science, 277 (1997) 1971. https://doi.org/10.1126/science.277.5334.1971
  4. A. Manedov, N. A. Kotov, M. Prato, D. M. Guldi, J. P. Wicksted and A. Hirsc: Nature Mater., 1 (2002) 190. https://doi.org/10.1038/nmat747
  5. E. T. Thostenson, Z. Ren and T. W. Chou: Compos. Sci. Technol., 61 (2001) 1899. https://doi.org/10.1016/S0266-3538(01)00094-X
  6. C. T. Wang, N. Gao, M. G. Gee, R. J. K. Wood and T. G. Langdon: Wear, 280-281 (2012) 28. https://doi.org/10.1016/j.wear.2012.01.012
  7. S. C. Yoon, S. J. Hong, M. H. Seo, Y. G. Jeong and H. S. Kim: J. Kor. Powd. Met. Inst., 11 (2004) 233. https://doi.org/10.4150/KPMI.2004.11.3.233
  8. H. S. Kim and D. N. Lee: Mater. Trans., 45 (2004) 1829. https://doi.org/10.2320/matertrans.45.1829
  9. J. Robertson, J. T. Im, I. Karaman, K. T. Hartwig and I. E. Anderson: J. Non-Cryst. Solids, 317 (2003) 114.
  10. A. V. Korznikov, I. Safarov, D. V. Laptionok and R. Z. Valiev: Acta Mater., 39 (1991) 3193. https://doi.org/10.1016/0956-7151(91)90054-5
  11. H. Shen, B. Guenther, A. V. Koanikov and R. Z. Valiev: Nanostruct. Mater., 6 (1995) 385. https://doi.org/10.1016/0965-9773(95)00077-1
  12. R. Z. Valiev, R. S. Mishra, J. Groza and A. K. Mukherjee: Scripta Mater., 34 (1996) 1443. https://doi.org/10.1016/1359-6462(95)00676-1
  13. J. Sort, A. P. Zhilyaev, M. Zielinska, J. Nogues, S. Surinach, J. Thibault and M. D. Baro: Acta Mater., 51 (2003) 6385. https://doi.org/10.1016/j.actamat.2003.08.006
  14. Z. Lee, F. Zhou, R. Z. Valiev, E. J. Lavernia and S. R. Nutt: Scripta Mater., 51 (2004) 209. https://doi.org/10.1016/j.scriptamat.2004.04.016
  15. E. Y. Yoon, H. J. Chae, T.-S. Kim, C. S. Lee, and H. S. Kim: J. Kor. Powd. Met. Inst., 17 (2010) 190 (Korean). https://doi.org/10.4150/KPMI.2010.17.3.190
  16. S.-H. Joo, S. C. Yoon, C. S. Lee and H. S. Kim: J. Kor. Powd. Met. Inst., 17 (2010) 52 (Korean). https://doi.org/10.4150/KPMI.2010.17.1.052
  17. T. Tokunaga, K. Kaneko and Z. Horita; Mater. Sci. Eng. A, 490 (2008) 300. https://doi.org/10.1016/j.msea.2008.02.022
  18. I. V. Alexandrov, Y. T. Zhu, T. C. Lowe, R. K. Islamgaliev and R. Z. Valiev: Nanostruct. Mater., 10 (1998) 45. https://doi.org/10.1016/S0965-9773(98)00026-9
  19. I. V. Alexandrov, Y. T. Zhu, T. C. Lowe and R. Z. Valiev: Powder Metall., 41 (1998) 11. https://doi.org/10.1179/pom.1998.41.1.11
  20. I. V. Alexandrov, Y. T. Zhu, T. C. Lowe, R. K. Islamgaliev and R. Z. Valiev: Metall. Mater. Trans. A, 29 (1998) 2253. https://doi.org/10.1007/s11661-998-0103-4
  21. V. V. Stolyarov, Y. T. Zhu, T. C. Lowe, R. K. Islamgaliev and R. Z. Valiev: Mater. Sci. Eng. A, 282 (2000) 78. https://doi.org/10.1016/S0921-5093(99)00764-9
  22. R. Kuzel, Z. Matej, V. Cherkaska, J. Pesicka, J. Cizek, I. Prochazka and R. K. Islamgaliev: J. Alloys Compd., 378 (2004) 242. https://doi.org/10.1016/j.jallcom.2003.12.048
  23. R. K. Islamgaliev, W. Buchgraber, Y. R. Kolobov, N. M. Amirkhanov, A. V. Sergueeva, K. V. Ivanov and G. P. Grabovetskaya: Mater. Sci. Eng. A, 319-321 (2001) 872. https://doi.org/10.1016/S0921-5093(01)01073-5
  24. T. Tokunaga, K. Kaneko, K. Sato and Z. Horita: Scripta Mater., 58 (2008) 735. https://doi.org/10.1016/j.scriptamat.2007.12.010
  25. E. Menendez, J. Sort, V. Langlais, A. Zhilyaev, J.S. Munoz, S. Surinach, J. Nogues and M.D. Baro: J. Alloys Compd., 434-435 (2007) 505. https://doi.org/10.1016/j.jallcom.2006.08.142
  26. E. Menendez, G. Salazar-Alvarez, A. P. Zhilyaev, S. Surinach, M. D. Baro, J. Nogues and J. Sort: Adv. Funct. Mater., 18 (2008) 3293. https://doi.org/10.1002/adfm.200800456
  27. H. Li, A. Misra, Y. Zhu, Z. Horita, C. C. Koch and T. G. Holesinger: Mater. Sci. Eng. A, 523 (2009) 60. https://doi.org/10.1016/j.msea.2009.05.031
  28. H. Li, A. Misra, Z. Horita, C. C. Koch, N. A. Mara, P. O. Dickerson and Y. Zhu: J. Appl. Phys., 95 (2009). 071907.
  29. A. Bachmaier, A. Hohenwarter and R. Pippan: Scripta Mater., 61 (2009) 1016. https://doi.org/10.1016/j.scriptamat.2009.08.016
  30. W. J. Botta Filho, J. B. Fogagnolo, C. A. D. Rodrigues, C. S. Kiminami, C. Bolfarini, and A. R. Yavari: Mater. Sci. Eng. A, 375-377 (2004) 936. https://doi.org/10.1016/j.msea.2003.10.072
  31. J. Sort, D. C. Ile, A. P. Zhilyaev, A. Concustell, T. Czeppe, M. Stoica, S. Surinach, J. Eckert and M.D. Baro: Scripta Mater., 50 (2004) 1221. https://doi.org/10.1016/j.scriptamat.2004.02.004
  32. A. R. Yavari, W. J. Botta Filho, C. A. D. Rodrigues, C. Cardoso, and R. Z. Valiev: Scripta Mater., 46 (2002) 711. https://doi.org/10.1016/S1359-6462(02)00057-X
  33. S. C. Yoon and H. S. Kim: Mater. Sci. Forum, 503-504 (2006) 221.
  34. E. W. Wong, P. E. Sheehan, and C. M. Lieber: Science, 277 (1997) 1971. https://doi.org/10.1126/science.277.5334.1971
  35. H. S. Kim: Mater. Sci. Eng. A, 315 (2001) 122. https://doi.org/10.1016/S0921-5093(01)01188-1
  36. K.-T. Park, H.-J. Kwon, W.-J. Kim and Y.-S. Kim: Mater. Sci. Eng. A, 316 (2001) 145. https://doi.org/10.1016/S0921-5093(01)01261-8
  37. E. Y. Yoon, D. J. Lee, H. N. Kim, H.-S. Kang, E. S. Lee and H. S. Kim: J. Kor. Powd. Met. Inst., 18 (2011) 411 (Korean). https://doi.org/10.4150/KPMI.2011.18.5.411
  38. R. Z. Valiev, V. Yu. Gertsman and O. A. Kaibyshev: Phys. Status Solidi A, 97 (1986) 11. https://doi.org/10.1002/pssa.2210970102
  39. R. Z. Valiev, N. A. Krasilnikov and N. K. Tsenev: Mater. Sci. Eng. A, 137 (1991) 35. https://doi.org/10.1016/0921-5093(91)90316-F
  40. X. Sauvage, G. Wilde, S. V. Divinski, Z. Horita and R. Z. Valiev: Mater. Sci. Eng. A, 540 (2012) 1. https://doi.org/10.1016/j.msea.2012.01.080

Cited by

  1. Trend in Research of Powder Consolidation Using Severe Plastic Deformation vol.20, pp.2, 2013, https://doi.org/10.4150/KPMI.2013.20.2.148
  2. Grinding Behaviour of Aluminum Powder for Al/CNTs Nano Composites Fabrication by Dry Grinding Process Using a High Speed Planetary Ball Mill vol.23, pp.2, 2013, https://doi.org/10.3740/MRSK.2013.23.2.89
  3. Microstructure Evolution and Mechanical Properties of Al-1080 Processed by a Combination of Equal Channel Angular Pressing and High Pressure Torsion vol.44, pp.6, 2013, https://doi.org/10.1007/s11661-013-1629-7