DOI QR코드

DOI QR Code

Effect of Silicon Source and Application Method on Growth of Kalanchoe 'Peperu'

규산염 종류와 적용방법이 칼랑코에 '페페루'의 생육에 미치는 영향

  • Son, Moon-Sook (Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University) ;
  • Oh, Hye-Jin (Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University) ;
  • Song, Ju-Yeon (Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University) ;
  • Lim, Mi-Young (Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University) ;
  • Sivanesan, Iyyakkannu (Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Jeong, Byoung-Ryong (Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University)
  • 손문숙 (경상대학교 대학원 응용생명과학부(BK21 Program) 원예학과) ;
  • 오혜진 (경상대학교 대학원 응용생명과학부(BK21 Program) 원예학과) ;
  • 송주연 (경상대학교 대학원 응용생명과학부(BK21 Program) 원예학과) ;
  • 임미영 (경상대학교 대학원 응용생명과학부(BK21 Program) 원예학과) ;
  • ;
  • 정병룡 (경상대학교 대학원 응용생명과학부(BK21 Program) 원예학과)
  • Received : 2011.08.31
  • Accepted : 2012.04.04
  • Published : 2012.06.30

Abstract

The effect of different source silicon ($CaSiO_3$, $K_2SiO_3$, and $NaSiO_3$) and their application methods (foliar application and subirrigation) on the growth of potted kalanchoe was investigated. Rooted terminal cuttings of Kalanchoe blossfeldiana 'Peperu' were transplanted into 10.5 cm plastic pots containing a commercial growing medium. Then, a nutrient solution, containing 0 or $50mg{\cdot}L^{-1}$ Si as $K_2SiO_3$, $Na_2SiO_3$, or $CaSiO_3$ and adjusted to EC 1.4-$1.6mS{\cdot}cm^{-1}$ and pH 6.0, was supplied through subirrigation along with the nutrient solution or by a foliar application. Plants were grown in a glasshouse under a mean temperature of $23^{\circ}C$ and RH of 70-80%. After 12 weeks of cultivation, plant growth characteristics and leaf tissue contents of P, K, Ca, Mg, Na, S, and Si were measured. Both subirrigational supply and foliar application of Si decreased the plant height and flower stem length. However, the plant condition in the foliar application resulted in disease-like soft rot on the leaf. Among three silicon sources tested, $CaSiO_3$ supplied through a subirrigation system increased shoot tissue contents of Si and chlorophyll as compared to the $Na_2SiO_3$ or $K_2SiO_3$ treatment. Shoot tissue contents of Ca, K, and Na increased when the plant was supplied with $CaSiO_3$, $K_2SiO_3$, and $Na_2SiO_3$, respectively. Subirrigational supply of $K_2SiO_3$ and $NaSiO_3$ decreased the shoot tissue contents of Ca and Mg, and K and Ca, respectively. Therefore, $CaSiO_3$ supplied through a subirrigation system could improve plant quality of kalanchoe 'Peperu' making compact potted plants.

본 연구는 저면관수와 엽면살포의 두 가지 관수방법에서 세 가지 규산염($CaSiO_3$, $K_2SiO_3$, $Na_2SiO_3$)의 처리가 칼랑코에의 생육에 미치는 영향을 알아보고자 수행하였다. 칼랑코에 'Peperu'를 2010년 7월 17일 삽목하고, 2010년 8월 3일에 삽목묘 중 균일한 개체를 선발하여 상토(토실이상토, 신안그로)가 담긴 10.5cm 포트에 정식하였다. 정식 후 세 가지 규산염($CaSiO_3$, $Na_2SiO_3$, $K_2SiO_3$)을 $50mg{\cdot}L^{-1}$ Si의 농도로 엽면살포 또는 저면관수로 처리하였다. 재배 중의 EC는 1.4-$1.6mS{\cdot}cm^{-1}$로, pH는 6.0의 범위를 유지하도록 공급양액과 공급량을 조절하였다. 규산염 처리 12주째에 수확하여 초장, 경경, 엽록소 함량, 꽃대 수, 꽃대 길이, 생체중과 건물 중, 그리고 식물체 내 축적된 규소함량을 측정하였다. 그 결과 저면관수와 엽면살포 처리 시 초장과 꽃대길이가 줄어들었지만, 엽면살포 처리 시 잎이 썩거나 물러지는 현상이 발견되었다. 세 가지 다른 규산염 종류 사이에서는 저면관수를 통해 공급한 $CaSiO_3$ 처리에서 규소가 칼랑코에 잎에 가장 많이 흡수되었고, 그 영향으로 엽록소 함량이 증가하였다. 신초 조직의 원소 함량은 $CaSiO_3$, $K_2SiO_3$, 그리고 $NaSiO_3$ 처리에 따라 $Ca^+$, $K^+$, 그리고 $Na^+$가 각각 높았고, 저면관수한 $K_2SiO_3$$NaSiO_3$ 처리에서는 $Ca^+$$Mg^+$, 그리고 $K^+$$Ca^+$가 각각 낮았다. 최종적으로 저면관수 $CaSiO_3$ $50mg{\cdot}L^{-1}$ 처리한 칼랑코에의 잎에 Si가 가장 많이 축적되었고, 축적된 Si 함량의 영향으로 엽록소 함량이 증가되었다. 또한 대조구에 비해 규산염처리에서 초장과 같은 생장량이 감소되어 칼랑코에와 같은 소형 분화류의 품질을 향상시켰으나 각 규산염 처리구 사이에서의 생육에는 유의적인 차이가 없었다.

Keywords

References

  1. Adatia, M.D. and R.T. Besford. 1986. The effects of silicon on cucumber plants grown in recirculating nutrient solution. Ann. Bot. 58:343-351.
  2. Aoki, M. and M. Ogawa. 1997. Influence of silicon on the blossomend rot and growth of tomato. J. Sci. Soil Manure 48:156-159.
  3. Bae, M.J., Y.G. Park, and B.R. Jeong. 2010. Effect of a silicate fertilizer supplemented to a medium on the growth and development of potted plants. Flower Res. J. 18:50-56.
  4. Bowen, P.A., J.G. Menzies, and D.L. Ehret. 1992. Soluble silicon sprays inhibit powdery mildew development on grape leaves. J. Amer. Soc. Hort. Sci. 117:906-912.
  5. Burlo, F., I. Guijarro, A.A.C. Barrachina, and D. Vlaero. 1999. Arsenic species: Effects on and accumulation by tomato plants. J. Agric. Food Chem. 47:1247-1253. https://doi.org/10.1021/jf9806560
  6. Cho, I.C., S.H. Lee, and B.J. Cho. 1998. Effects of soluble silicon and several surfactants on the development of powdery mildew of cucumber. Kor. J. Environ. Agric. 17:306-311.
  7. Datnoff, L.E., K.W. Kenneth, and F.J. Correa-V. 2001. Silicon in agriculture. Elsevier Science, Amsterdam.
  8. Dole, J.M. and H.F. Wilkins. 1999. Kalanchoe, p. 403-408. In: J.M. Dole and H.F. Wilkins (eds.). Floriculture: Principles and species. Prentice Hall, Upper Saddle River, New Jersey, U.S.A.
  9. Elawad, S.H., G.J. Gascho, and J.J. Street. 1982. Response of sugarcane to silicate source and rate. I. Growth and yield. Agron. J. 74:481-484. https://doi.org/10.2134/agronj1982.00021962007400030019x
  10. Gascho, G.J. 2001. Silicon sources for agriculture, p. 197-207. In: L.E. Datnoff, G.H. Snyder, and G.H. Korndorfer (eds.). Silicon in agricurture. Elsvier Science, Amsterdam.
  11. Gent, M.P.N. 1997. Persistence of triazole growth retardants on stem elongation of Rhododendron and Kalmia. J. Plant Growth Regul. 16:197-203. https://doi.org/10.1007/PL00006996
  12. Guevel, M.H., J.G. Menzies, and R.R. Belanger. 2007. Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. Eur. J. Plant Pathol. 119:429-436. https://doi.org/10.1007/s10658-007-9181-1
  13. Jeong, B.R. 1998. Technology and environment management for the production of plug transplants of flower crops. Kor. J. Hort. Sci. Technol. 16:282-286.
  14. Kanto, T., A. Miyoshi, T.O.K. Maekawa, and M. Aino. 2006. Suppressive effect of liquid potassium silicate on powdery mildew of strawberry in soil. J. Gen. Plant Pathol. 72:137-142. https://doi.org/10.1007/s10327-005-0270-8
  15. Keeping, M.G. and J.H. Meyer. 2006. Silicon-mediated resistance of sugarcane to Eldana saccharina Walker (Lepidoptera: Pyralidae): Effects of silicon source and cultivar. J. Appl. Entomol. 130:410-420. https://doi.org/10.1111/j.1439-0418.2006.01081.x
  16. Kim, S.H., W. Oh, and K.S. Kim. 2007. Effects of nitrogen concentration and $NO_3^-:NH_4^+$ ratio of nutrient solution on stock plant growth, cutting yield, and quality in Kalanchoe blossfeldiana. Hort. Environ. Biotechnol. 48:52-59.
  17. Liang, Y., J. Zhu, Z. Li, G. Chu, Y. Ding, J. Zhang, and W. Sun. 2008. Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars. Environ. Expt. Bot. 64:286-394. https://doi.org/10.1016/j.envexpbot.2008.06.005
  18. Lu, Y.J. and J.E. Son. 2005. Effects of nutrient strength and light intensity on nutrient uptake and growth of young kalanchoe plants (Kalanchoe blossfeldiana 'Marlene') at seedling stage. J. Bio-Environ. Control 14:149-154.
  19. Ma, J.F. 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci. Plant Nutr. 50:11-18. https://doi.org/10.1080/00380768.2004.10408447
  20. Ma, J.F., K. Tamai, N. Yamaji, N. Mitani, S. Konishi, and M. Katsuhara. 2006. A silicon transporter in rice. Nature 440:688-691. https://doi.org/10.1038/nature04590
  21. Ma, J.F., Y. Miyake, and E. Takahashi. 2001. Silicon as a beneficial element for crop plants, p. 17-39. In: L.E. Datnoff, G.H. Snyder, and G.H. Korndorfer (eds.). Silicon in agricurture. Elsvier Science, Amsterdam.
  22. Marschner, H. 2003. Beneficial mineral elements, p. 405-435. In: H. Marschner (ed.). Mineral nutrition of higher plant. 2nd ed. Academic Press, Amsterdam.
  23. Medina-Ganzales, O.A., R.L. Fox, and R.P. Bosshart. 1988. Solubility and availability to sugarcane (Saccharum spp.) of two silicate materials. Fert. Res. 16:3-13. https://doi.org/10.1007/BF01053310
  24. Menzies, J.G., P.A. Bowen, D.L. Ehret, and A.D.M. Glass. 1992. Foliar applications of potassium silicate reduce severity of powdery mildew on cucumber, muskmelon, and zucchini squash. J. Amer. Soc. Hort. Sci. 112:902-905.
  25. Miyake, Y. and E. Takahashi. 1983. Effect of silicon on the growth of solution-cultured cucumber plant. Soil Sci. Plant Nutr. 29:71-82. https://doi.org/10.1080/00380768.1983.10432407
  26. Moon, H.H., M.J. Bae, and B.R. Jeong. 2008. Effect of silicate supplemented to medium on rooting of cutting and growth of chrysanthemum. Flower Res. J. 16:93-169.
  27. Pei, Z.F., D.F. Ming, D. Liu, G.L. Wan, X.X. Geng, H.J. Gong, and W.J. Zhou. 2010. Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J. Plant Growth Regul. 29:106-115. https://doi.org/10.1007/s00344-009-9120-9
  28. Richmond, K.E. and M. Sussman. 2003. Got silicon? The non-essential beneficial plant nutrient. Curr. Opin. Plant Biol. 6:268-272. https://doi.org/10.1016/S1369-5266(03)00041-4
  29. Savant, N.K., G.H. Snyder, and L.E. Datnoff. 1997. Silicon management and sustainable rice production. Adv. Agron. 58:151-199.
  30. Sivanesan, I., J.Y. Song, S.J. Hwang, and B.R. Jeong. 2011. Micropropagation of Cotoneaster wilsonii Nakai - A rare endemic ornamental plant. Plant Cell Tiss. Organ Cult. 105:55-63. https://doi.org/10.1007/s11240-010-9841-2
  31. Sivanesan, I., M.S. Son, J.P. Lee, and B.R. Jeong. 2010. Effects of silicon on growth of Tagetes patula L. 'Boy Orange' and 'Yellow Boy' seedlings cultured in an environment controlled chamber. Propagation Ornamental Plants 10:136-140.
  32. Snyder, G.H., D.W. Rich, C.L. Elliott, and M.P. Barbosa Filho. 2005. Evaluation of candidate silicon fertilizers. Soil Crop Sci. Soc. Fla. 64:52-54.
  33. Son, J.E., M.M. Oh, Y.J. Lu, K.S. Kim, and G.A. Giacomelli. 2006. Nutrient-flow wick culture system for potted plant production: System characteristics and plant growth. Sci. Hort. 107:392-398. https://doi.org/10.1016/j.scienta.2005.11.001
  34. Zuccarini, P. 2008. Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biol. Plant 52:157-160. https://doi.org/10.1007/s10535-008-0034-3

Cited by

  1. Silicon Supply through Subirrigation System Alleviates High Temperature Stress in Poinsettia by Enhancing Photosynthetic Rate vol.33, pp.6, 2015, https://doi.org/10.7235/hort.2015.15099
  2. 규산질비료가 시설재배지 토양특성과 고추수량에 미치는 영향 vol.33, pp.4, 2014, https://doi.org/10.5338/kjea.2014.33.4.254